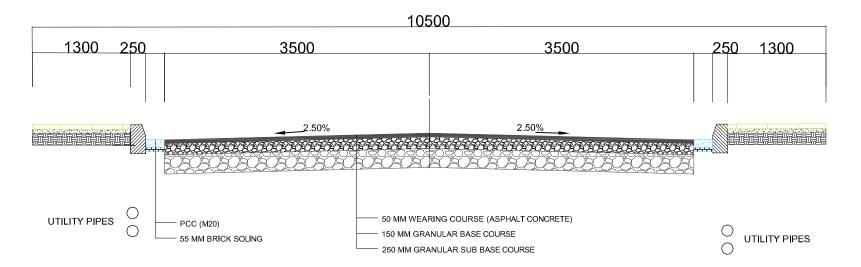


Government of Nepal Ministry of Urban Development Department of Urban Development and Building Construction

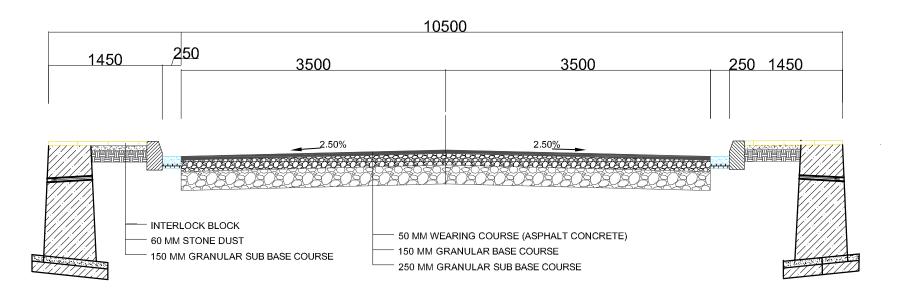
Regional Urban Development Project Project Coordination Office

Babarmahal, Kathmandu

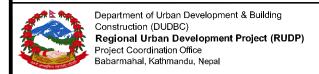
DETAIL PROJECT REPORT for LUMBINI URBAN ROADS SUBPROJECT


VOLUME – III (TYPICAL DRAWINGS) LUMBINI URBAN ROADS, LUMBINI SANSKRITIK MUNICIPALITY CH: 0+000 - 12+257.65 Km

Pre-Feasibility Study, Feasibility Study and Preparation of Detail Project Report of West Urban Corridor (WUC) Development Project


[Ref. No. RUDP/DUDBC/PDC/1-WC]

Consultant


DOHWA ENGINEERING in association with ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and DIGICON (P.) Ltd.

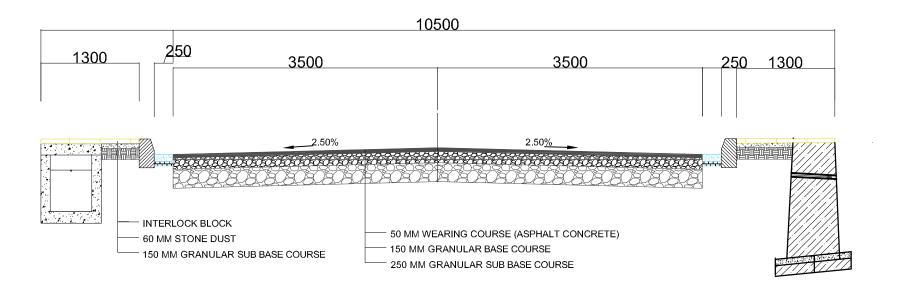
Typical Cross Section of Road (Total width -10.5 m) Scale - 1:50

Typical Cross Section of Road with Retaining Wall Scale - 1:50

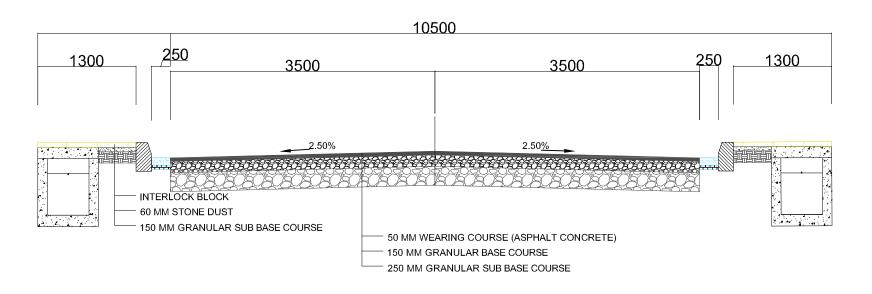
Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.

Consultant	Client	Scale
Team Leader : YOO CHANGMIN	Approved By :	
Reviewed By : YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown LUMBI

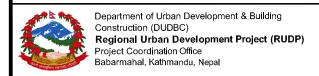

TYPICAL CROSS SECTION OF ROAD

LUMBINI SANSKRITIK URBAN ROADS


LUMBINI SANSKRITIK MUNICIPALITY

CH: 0+000 - 12+257.65 Km

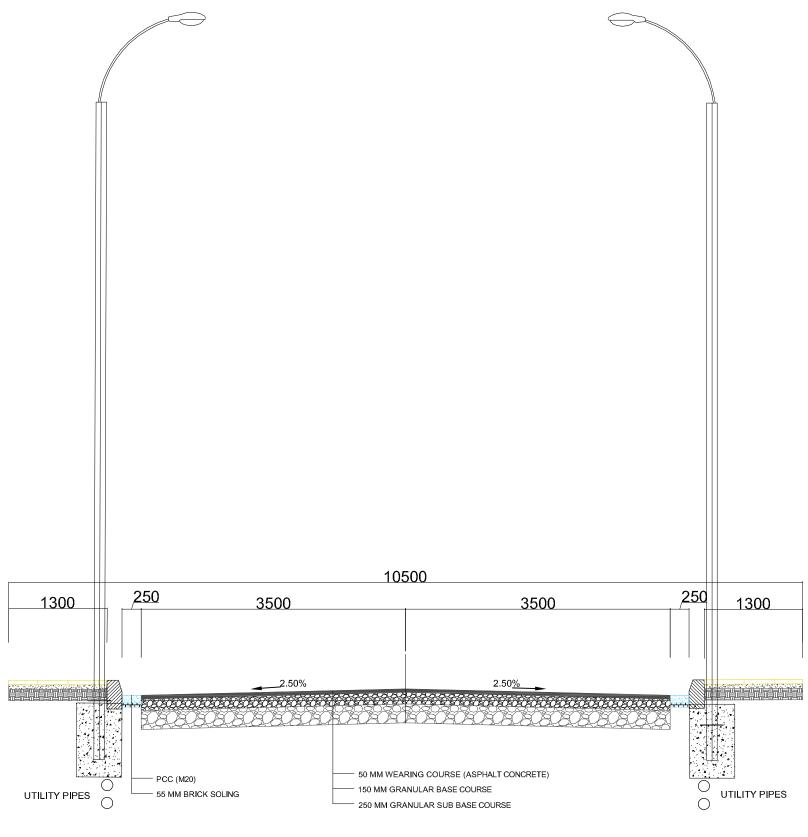
	REV	: DEC 2024
s	TITLE	: TYPICAL DRAWINGS
Υ	DRG NO	: LSM/RD/TD/01
	SHEET NO	: 01



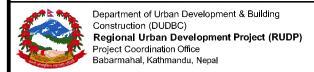
Typical Cross Section of Road with Retaining Wall Scale - 1:50

Typical Cross Section of Road with Drain (Total Width-10.5m)

Scale - 1:50



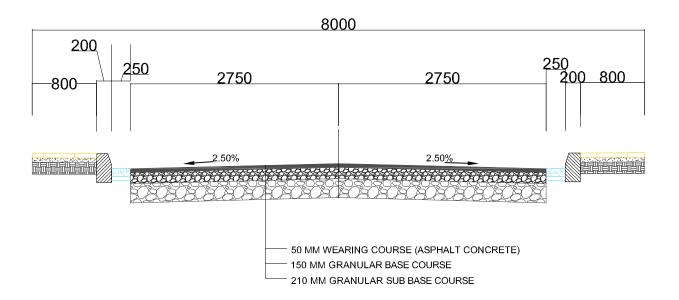
Reviewed & Designed By :
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.


Consultant	Client	Scale
Team Leader: YOO CHANGMIN	Approved By :	
Reviewed By : YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

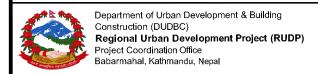
Typical Cross Section of Footpath with Street Light (Total width -10.5 m) Scale - 1:50



Reviewed & Designed By : DOHWA Engineering Co. Ltd. in Association with ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and DIGICON (P.) Ltd. Mid- Baneshwor, Kathmandu Tel: 01- 4589393

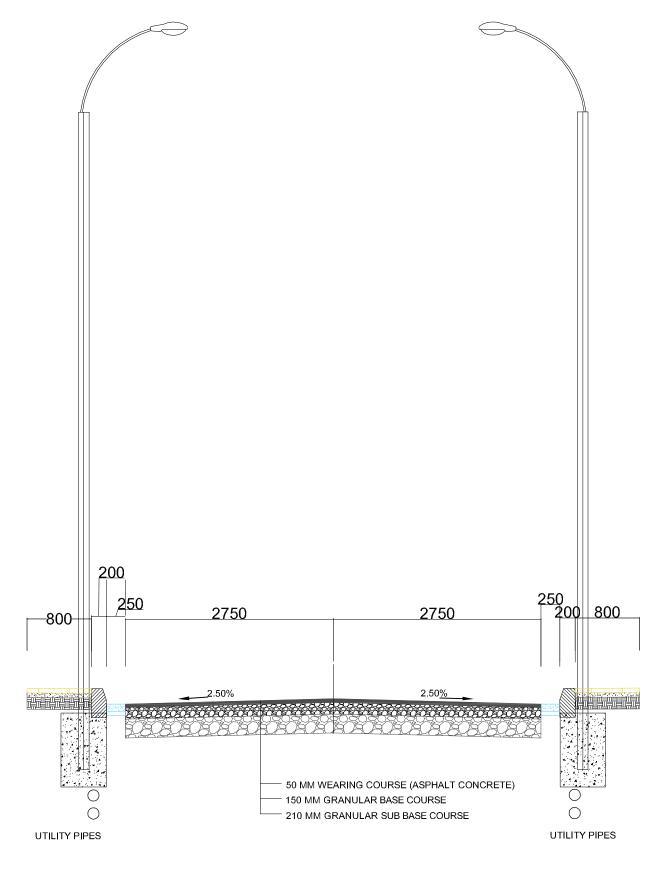
	Consultant	Client	Scale
	Team Leader: YOO CHANGMIN	Approved By :	
ı	Reviewed By: YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

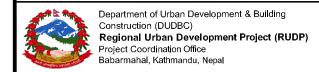

REV : DEC 2024 TYPICAL CROSS SECTION OF ROAD : TYPICAL DRAWINGS TITLE **LUMBINI SANSKRITIK URBAN ROADS** DRG NO : LSM/RD/TD/03 LUMBINI SANSKRITIK MUNICIPALITY CH: 0+000 - 12+257.65 Km SHEET NO: 03

Typical Cross Section of Road with Footpath Scale - 1:50

Typical Cross Section of Road with RCC Covered Drain Scale - 1:50


Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.

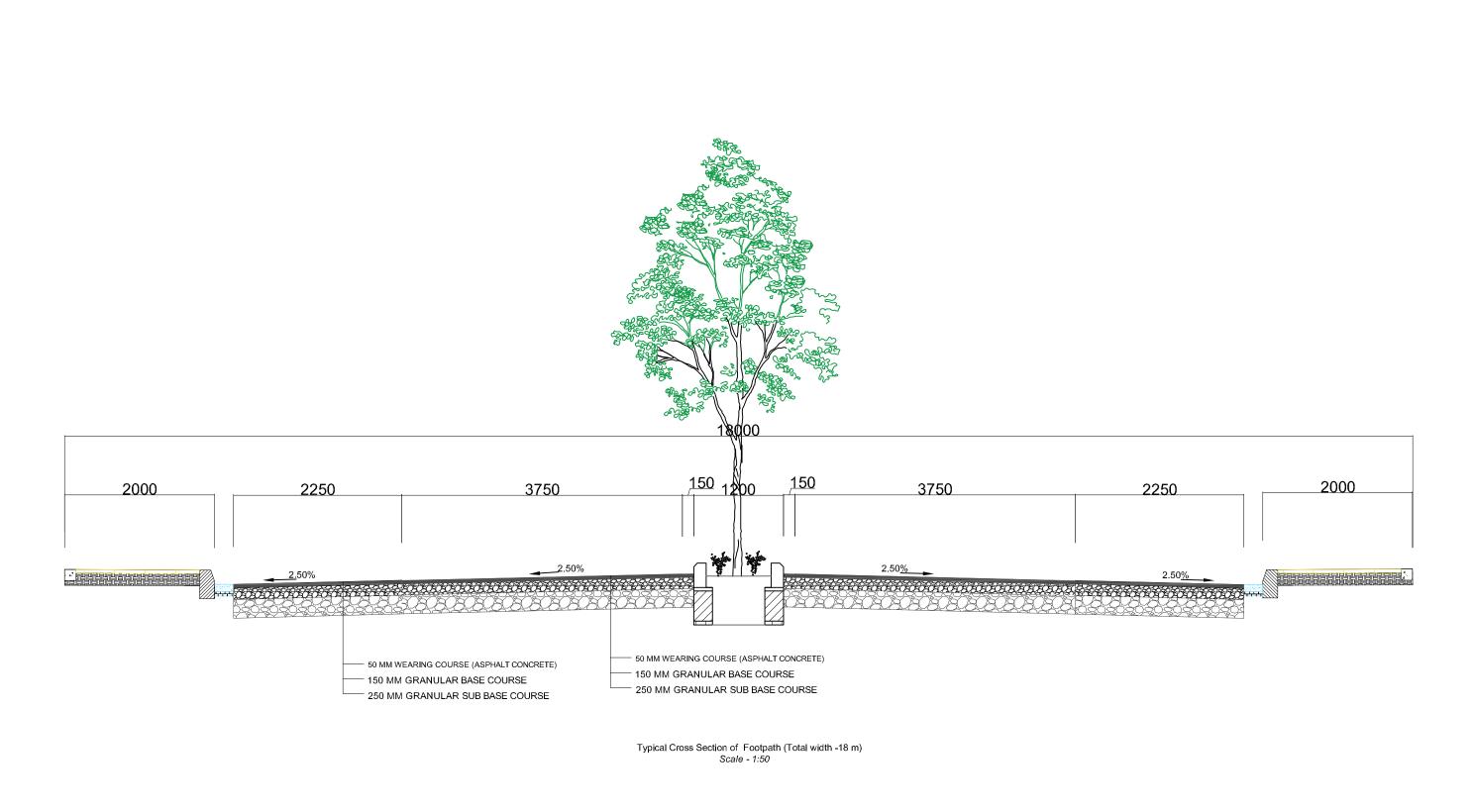
Consultant	Client	Scale
Team Leader : YOO CHANGMIN	Approved By :	
Reviewed By : YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By :	


As Shown

LUMBINI SANSKRITIK URBAN ROAD
LUMBINI SANSKRITIK MUNICIPALIT
CH: 0+000 - 12+257.65 Km

)	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
ITY	DRG NO	: LSM/RD/TD/04
	SHEET NO	: 04

Typical Cross Section of Road (8.0 m) with Street Light Scale - 1:50

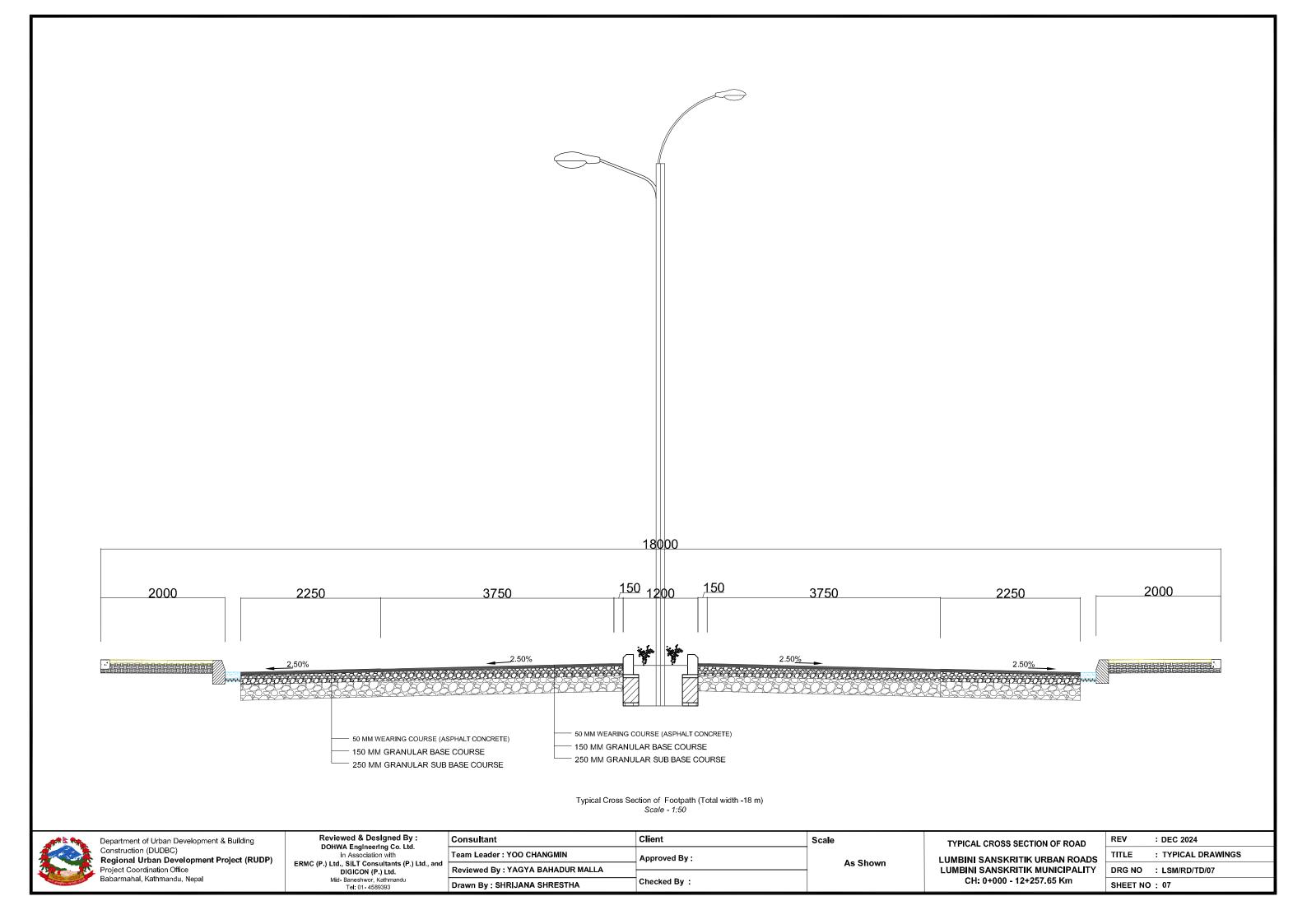

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

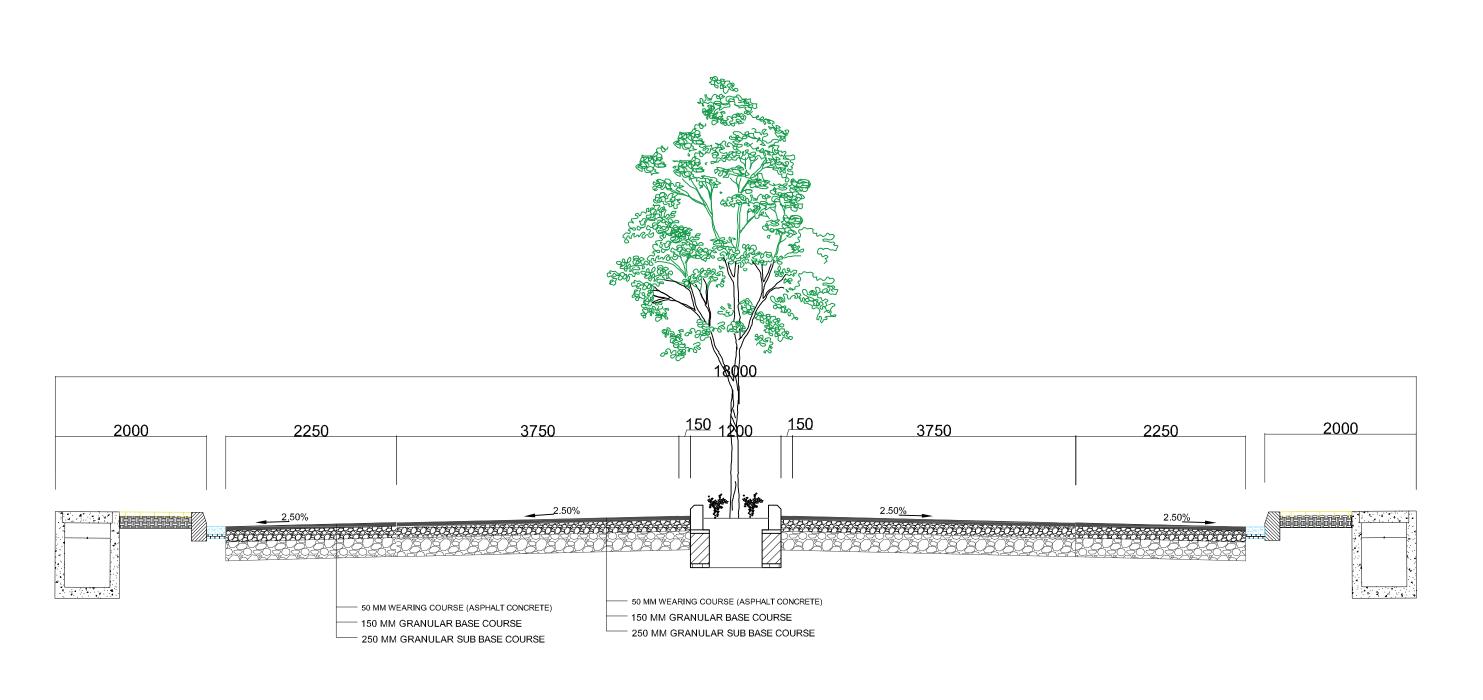
	Consultant	Client	Scale
İ	Team Leader : YOO CHANGMIN	Approved By:	
Ī	Reviewed By : YAGYA BAHADUR MALLA		
Ī	Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

s Y	REV	: DEC 2024
	TITLE	: TYPICAL DRAWINGS
	DRG NO	: LSM/RD/TD/05
	SHEET NO	: 05


Reviewed & Designed By: DOHWA Engineering Co. Ltd. in Association with In Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01- 4589393

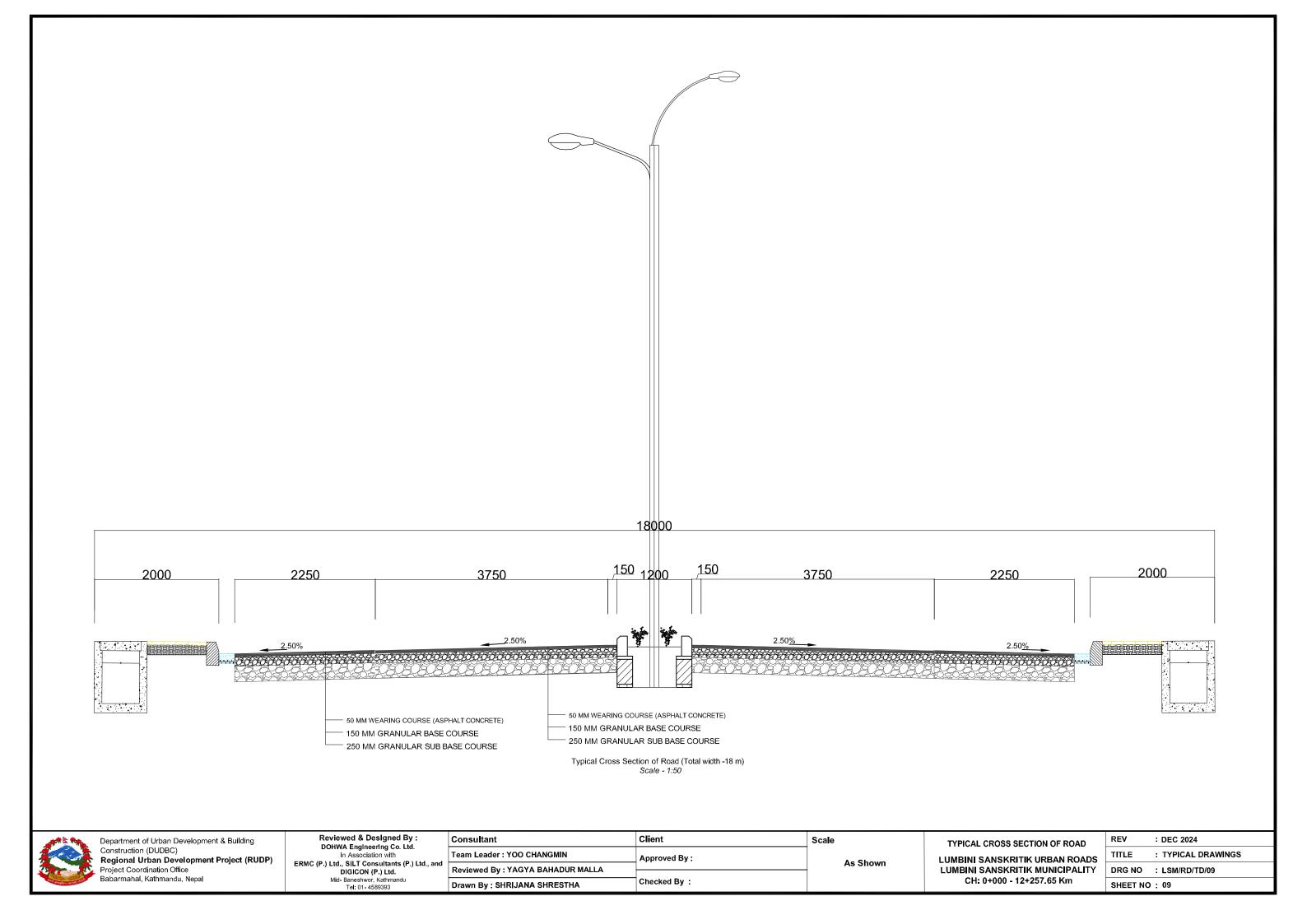

Client Consultant Scale Team Leader: YOO CHANGMIN Approved By: Reviewed By: YAGYA BAHADUR MALLA Checked By: Drawn By : SHRIJANA SHRESTHA

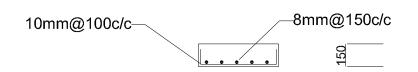
TYPICAL CROSS SECTION OF ROAD **LUMBINI SANSKRITIK URBAN ROADS** As Shown

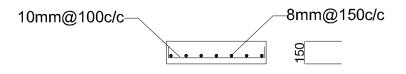
REV : DEC 2024 TITLE : TYPICAL DRAWINGS DRG NO : LSM/RD/TD/06 LUMBINI SANSKRITIK MUNICIPALITY CH: 0+000 - 12+257.65 Km SHEET NO: 06

A STATE OF THE STA	Department of Urban Development & Building Construction (DUDBC)
	Regional Urban Development Project (RUDP)
7	Project Coordination Office
1	Babarmahal, Kathmandu, Nepal

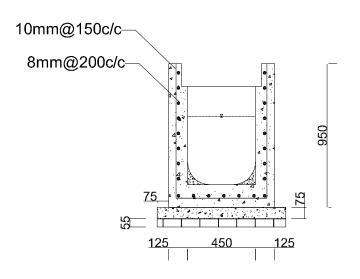
Typical Cross Section of Road with Median and RCC Covered Drain Scale - 1:50

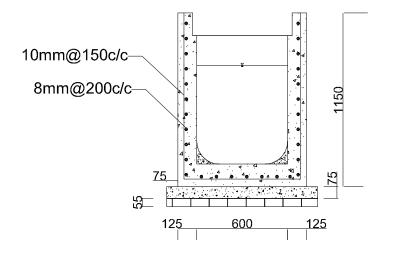


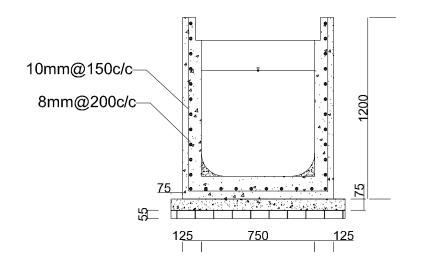

Reviewed & Designed By : DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.

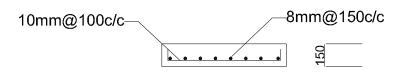

Consultant	Client	Scale
Team Leader: YOO CHANGMIN	Approved By :	
Reviewed By : YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By:	

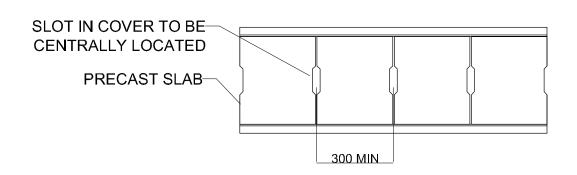
TYPICAL CROSS SECTION OF ROAD LUMBINI SANSKRITIK URBAN ROADS As Shown LUMBINI SANSKRITIK MUNICIPALITY

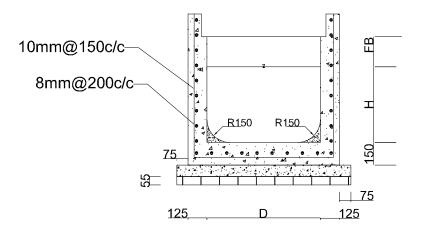

REV : DEC 2024 TITLE : TYPICAL DRAWINGS DRG NO : LSM/RD/TD/08 CH: 0+000 - 12+257.65 Km SHEET NO: 08





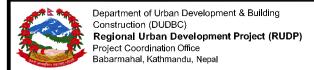





RCC DRAIN - TYPE A Scale - 1:25

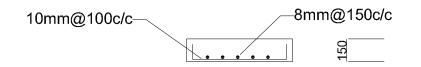
RCC DRAIN - TYPE B Scale - 1:25

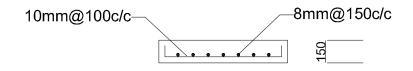
RCC DRAIN - TYPE C Scale - 1:25



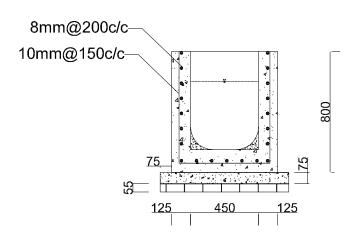
PLAN OF RCC DRAIN WITH PRECAST DRAIN COVER

DRAIN SIZES			
Туре	H (mm)	FB (mm)	
Α	450	450	200
В	600	600	200
С	750	750	200
F	550	550	200
G	550	800	200

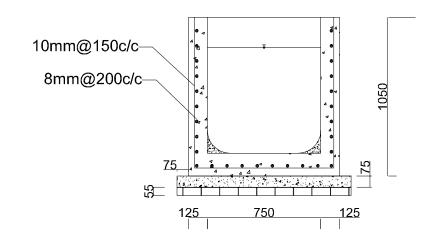

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.,
Mid-Baneshwor, Kathmandu
Tel: 01-4589393

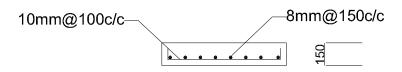

	Consultant	Client	Scale
	Team Leader: YOO CHANGMIN	Approved By :	
nd	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

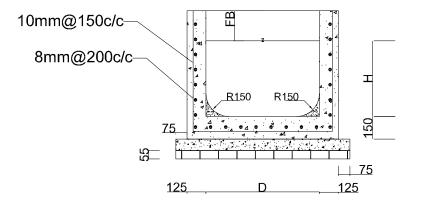
As Shown


LUMBINI SANSKRITIK URBAN ROAD
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
_ITY	DRG NO	: LSM/RD/TD/10
	SHEET NO	: 10

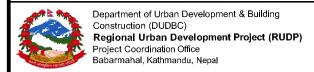



10mm@150c/c 8mm@200c/c 75 125 600 125


RCC DRAIN - TYPE A Scale - 1:25

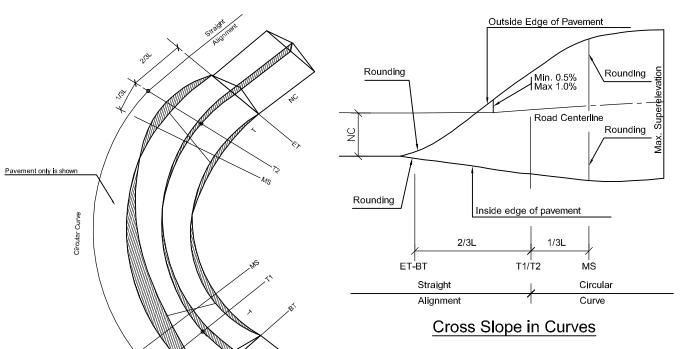
RCC DRAIN - TYPE B Scale - 1:25

RCC DRAIN - TYPE C Scale - 1:25



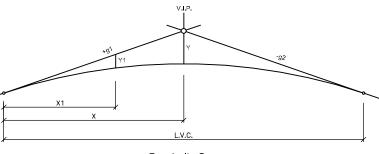
PLAN OF RCC DRAIN WITH PRECAST DRAIN COVER

DRAIN SIZES								
Туре	D (mm)	H (mm)	FB (mm)					
А	450	450	200					
В	600	600	200					
С	750	750	200					
F	550	550	200					
G	550	800	200					


Reviewed & DesIgned By:
DOHWA EngIneering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid-Baneshwor, Kathmandu
Tel: 01-4589393

	Consultant	Client	Scale
nd	Team Leader: YOO CHANGMIN	Approved By :	
	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

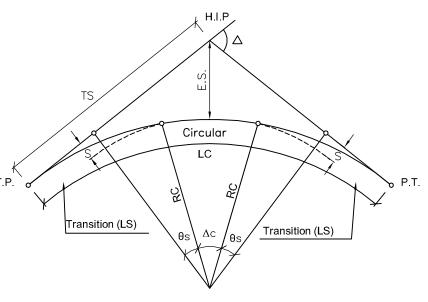

LUMBINI SANSKRITIK URBAN ROAL
LUMBINI SANSKRITIK MUNICIPALIT
CH: 0+000 - 12+257.65 Km

	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
.ITY	DRG NO	: LSM/RD/TD/11
	SHEET NO	: 11

For Circular horizontal curves the length L of superelevation run-off is based on maximum relative slope between profile of center line and pavement edge of 1.0%.

Circular Curve For Horizontal Alignment

Parabolic Curve For Vertical Alignment


Typical Superelevation

Pavement Widening on Curves

V.I.P. Vertical Intersection Point. = Length of Vertical Curve. L.V.C

Gradients. Abscissa of the Vertical Curve. X,X1 Ordinate of the Vertical Curve.

2 ±g1-(±g2) 2LVC

Elements of Combined Circular and **Transition Curve**

Transition Curve Detail

Transition Length

Mountaineous and Steep Terrain

Curve Radius	Design Speed in km/h					
(Meters)	50	40	30	25	20	
	Transi	ition Len	gth in Me	eters		
14				NA	30	
20				35	20	
25			NA	25	20	
30			30	25	15	
40		NA	25	20	15	
50		40	20	15	15	
55		40	20	15	15	
70	NA	30	15	15	15	
80	55	25	15	15	NR	
90	45	25	15	15		
100	45	20	15	15		
125	35	15	15	NR		
150	30	15	15			
170	25	15	NR			
200	20	15				
250	15	15				
300	15	NR				
400	15					
500	NR					

Tangent Point

Horizontal Intersection Point. Total Deviation Angle.

Deviation and Central Angle of Δc

Circular arc. Deviation Angle of Transition TS

Radius of Circular Curve.

θs

Tangent Distance.
Apex Distance.
Length of Transition.

ES LS

Length of Circular Curve.

Intersection Point Deflection Angle

Radius of Curvature

Tangent length
Distance from I.P. to Circular Curve Measured

on the Bisectors

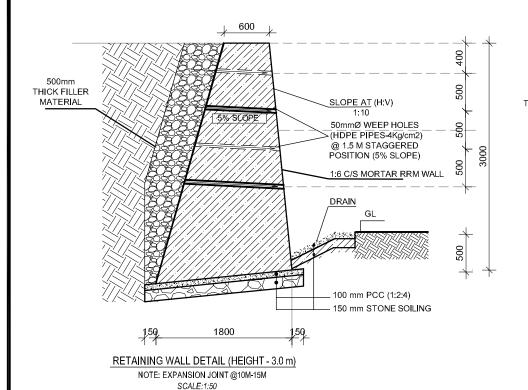
Length of Circular Curve Beginning of Circular Curve

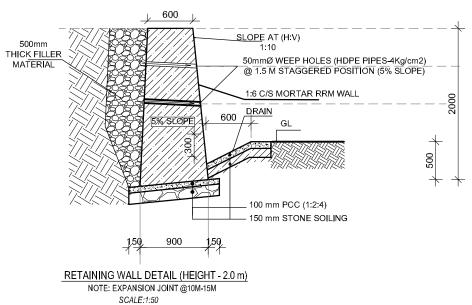
End of Circular Curve

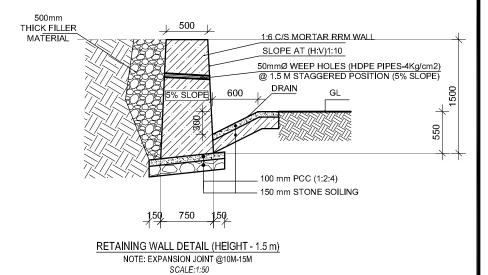
LC = R. $\frac{\Pi}{200}$. Δ

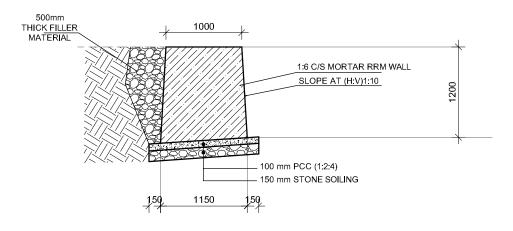
Department of Urban Development & Building Construction (DUDBC) Regional Urban Development Project (RUDP) Project Coordination Office Babarmahal, Kathmandu, Nepal

Reviewed & Designed By: DOHWA Engineering Co. Ltd. in Association with ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and DIGICON (P.) Ltd. Mid- Baneshwor, Kathmandu Tel: 01- 4589393

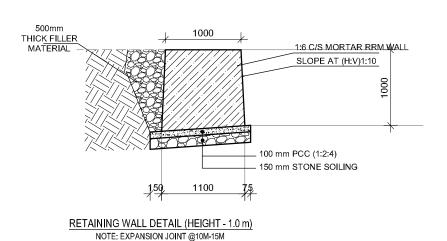

	Consultant	Client	Scale
	Team Leader : YOO CHANGMIN	Approved By :	
•	Reviewed By: YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

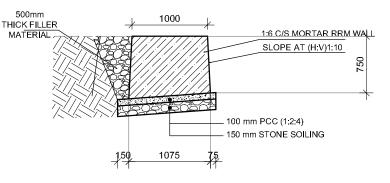

As Shown


LUMBINI SANSKRITIK URBAN ROADS LUMBINI SANSKRITIK MUNICIPALITY CH: 0+000 - 12+257.65 Km

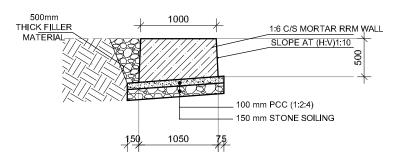

DETAILS OF ELEMENTS OF CURVES

REV	:	DEC 2024
TITLE	:	TYPICAL DRAWINGS
DRG NO	:	LSM/RD/TD/12
SHEET NO		12

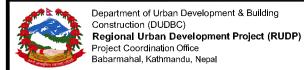




RETAINING WALL DETAIL (HEIGHT - 1.2 m)

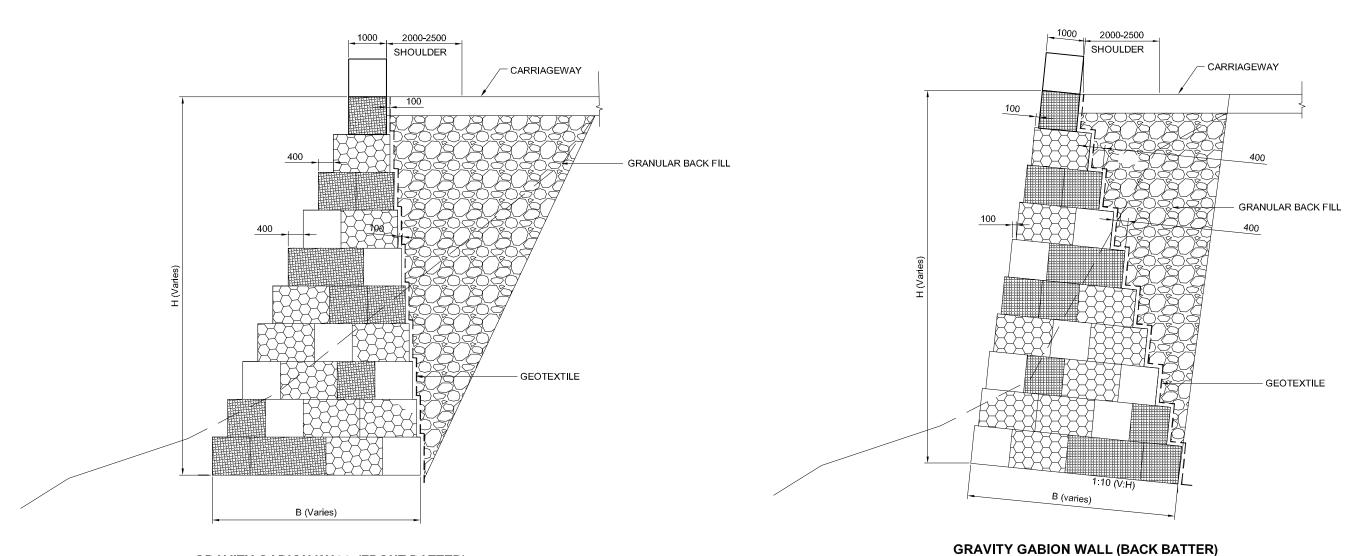

NOTE: EXPANSION JOINT @10M-15M

SCALE:1:50



RETAINING WALL DETAIL (HEIGHT - 0.75 m)
NOTE: EXPANSION JOINT @10M-15M

RETAINING WALL DETAIL (HEIGHT - 0.5 m)
NOTE: EXPANSION JOINT @10M-15M
SCALE:1:50


Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

	Consultant	Client	Sca
d	Team Leader: YOO CHANGMIN	Approved By :	
	Reviewed By: YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

LUMBINI SANSKRITIK URBAN ROAD
LUMBINI SANSKRITIK MUNICIPALIT
CH: 0+000 - 12+257.65 Km

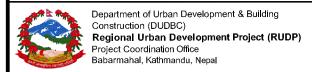
TAINING WALL	REV	: DEC 2024
RITIK URBAN ROADS RITIK MUNICIPALITY - 12+257.65 Km	TITLE	: TYPICAL DRAWINGS
	DRG NO	: LSM/RD/TD/13
	SHEET NO	: 13

GRAVITY GABION WALL (FRONT BATTER)

SCALE:-1:100

Detail for Gravity Gabion walls (FB-BB)

BASE WIDTHS AND TYPICAL GROUND PRESSURES ((T/m²)								
Wall He	eight (H),m	2	3	4	6	8	10	12
Front Batter	Base Width, (B)	1.5	2.0	2.5	3.5	4.5	5.5	6.5
Tront Butter	Ground pressure (T/m²)	50	70	90	120	150	190	230
Back Batter	Base Width, (B)	1.5	2.0	2.55	3.5	4.5	5.5	6.5
Dack Datter	Ground pressure (T/m²)	70	110	150	220	290	360	420


NOTES:

1. All dimensions are in mm except in the table mentioned.

SCALE:-1:100

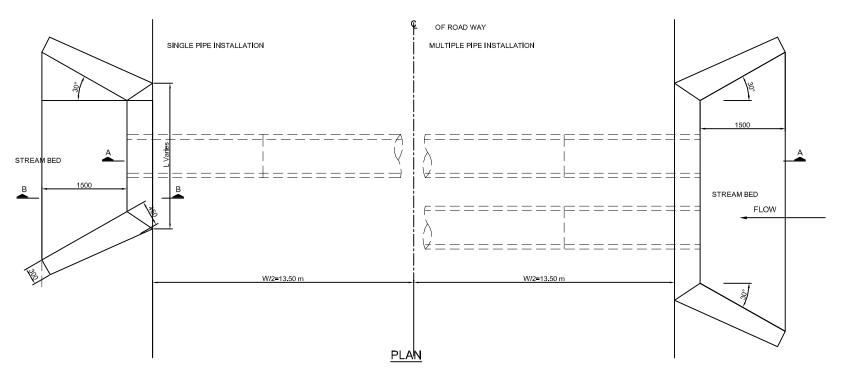
- 2. For wall height more than 6.0 m,and backfill slope angle greater than 20 degree.

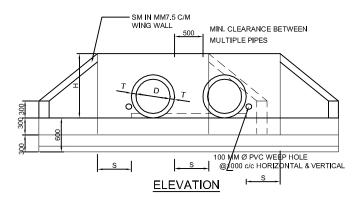
 Detailed design with Soil investigation is to be done as directed by the Engineer.
- 3. If space is available, slopping outside is preferred for valley side of the road.

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.

	Consultant	Client	Scale
nd	Team Leader: YOO CHANGMIN	Approved By :	
	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

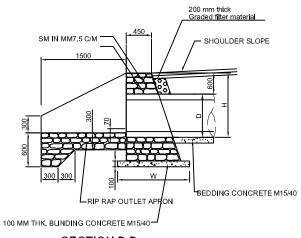
As Shown


LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km


LL REV : DEC 2024

TITLE : TYPICAL DRAWINGS

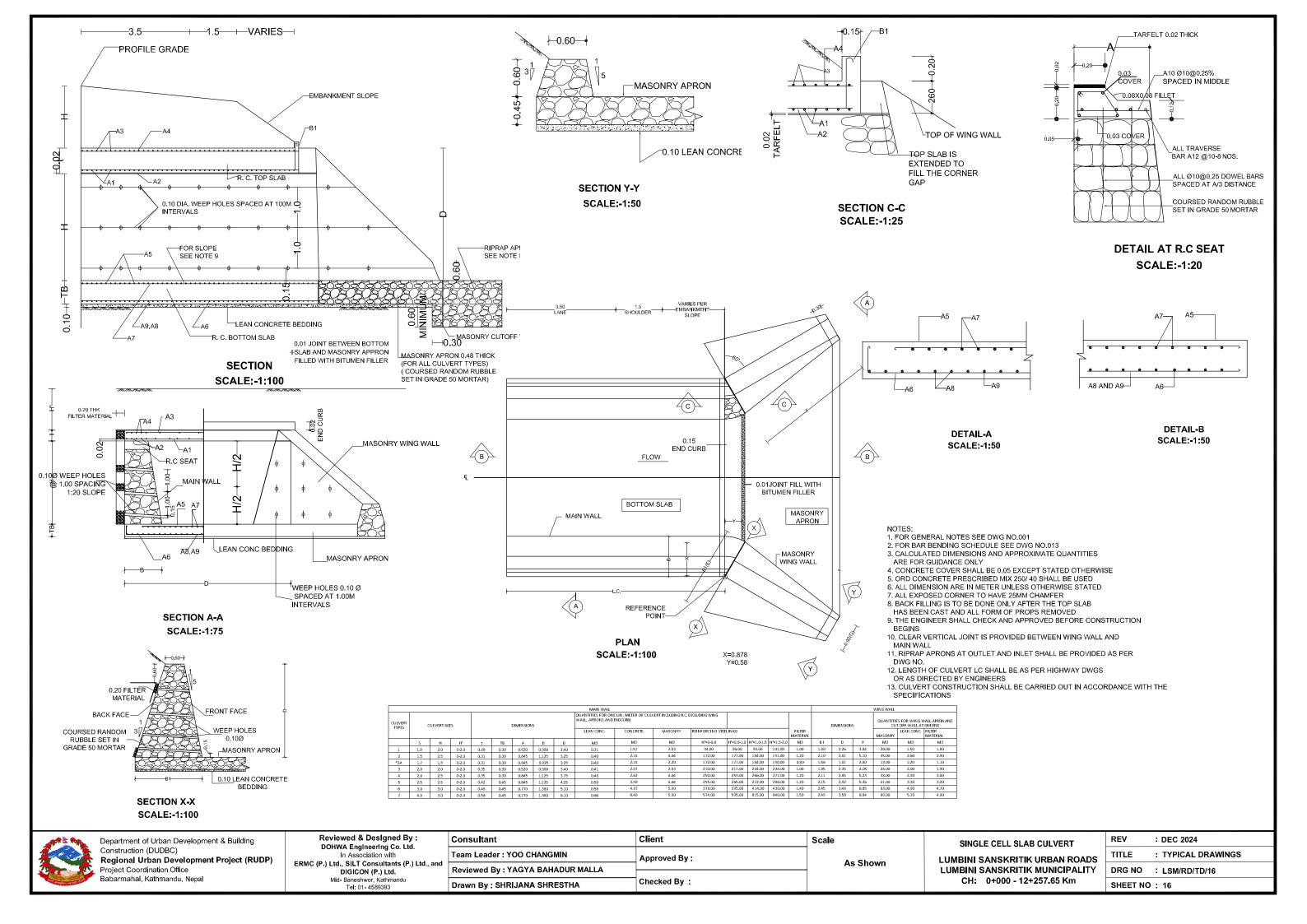
DRG NO : LSM/RD/TD/14

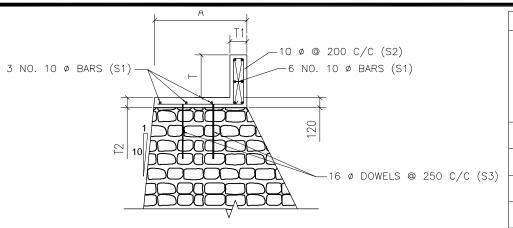

SHEET NO : 14

MASONRY END SECTION					
DIMENSIONS					
D	s				
600	600				
900	900				

SECTION B-B SHOWING END SECTION DETAILS Scale-15:1

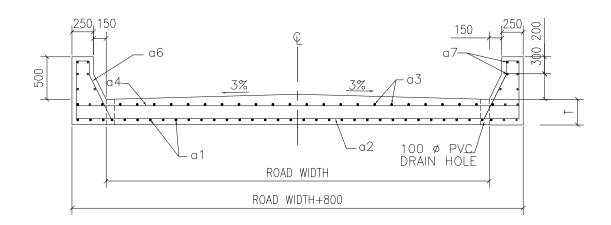
	Department of Urban Development & Building Construction (DUDBC) Regional Urban Development Project (RUDP Project Coordination Office Babarmahal, Kathmandu, Nepal
--	--

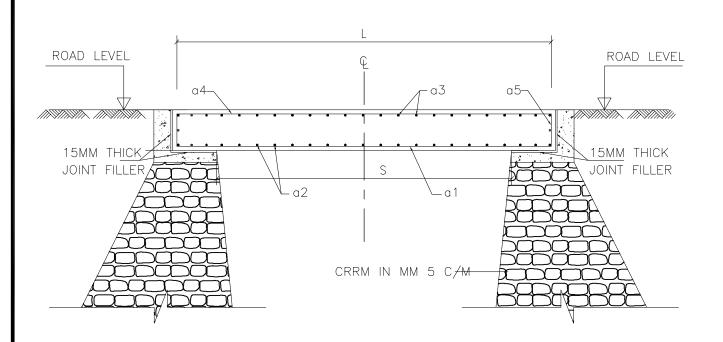

Reviewed & Designed By : DOHWA Engineering Co. Ltd. in Association with ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and DIGICON (P.) Ltd. Mid- Baneshwor, Kathmandu Tel: 01- 4589393


	Consultant	Client	Sca	
	Team Leader: YOO CHANGMIN	Approved By :		
d	Reviewed By : YAGYA BAHADUR MALLA			
	Drawn By : SHRIJANA SHRESTHA	Checked By:		

As Shown

TYPICAL PIPE CULVERT (PLAIN) LUMBINI SANSKRITIK URBAN ROAD LUMBINI SANSKRITIK MUNICIPALIT CH: 0+000 - 12+257.65 Km

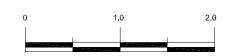

DS	REV	: DEC 2024
	TITLE	: TYPICAL DRAWINGS
TY	DRG NO	: LSM/RD/TD/15
	SHEET NO	: 15



	BAR BENDING SCHEDULE PER ONE LINEAR METRE OF CULVERT (EXCLUDING CURB & ABUTMENT SEAT)																				
- - !	VERT TYPE				L								L		L			L			
	CULVE		·	M	ARK a1			MARK a2				MARK a3			MARK a4			MARK a5			
		DIA (mm)	SPACING	NO REQD/ PER METRE	L	Remarks	DIA	SPACING	NO. REQD/ PER METRE	L	DIA	SPACING	NO. REQD/ PER METRE	L	DIA	SPACING	NO. REQD./ PER METRE	L	DIA	NO. REQD./ PER METRE	L
	1	12	140	7.14	1.54	Every third bar to be bent up	10	150	6.67	5.10	10	300	3.33	1.54	10	300	3.33	5.10	12	2	5.10
1	II	12	120	8.33	2.80	Every third bar to be bent up	10	150	6.67	5.10	10	300	3.33	2.80	10	300	3.33	5.10	12	2	5.10
ı	111	16	140	7.14	4.04	Every third bar to be bent up	10	150	6.67	5.10	10	300	3.33	4.04	10	300	3.33	5.10	12	2	5.10
	IV	16	110	9.09	5.04	Every third bar to be bent up	10	150	6.67	5.10	10	200	5.00	6.04	10	200	2.00	5.10	12	2	5.10
,	v	20	140	7.14	6.04	Alternate bar to be bent up	12	170	5.88	5.10	12	300	3.33	6.50	12	300	3.33	5.10	12	2	5.10
,	√I	20	130	7.69	7.04	Alternate bar to be bent up	12	150	6.67	5.10	12	200	5.00	7.80	12	200	5.00	5.10	12	2	5.10

ABUTMENT SEAT DETAIL

TRANSVERSE SECTION


	BAR BENDING SCHEDULE OF ABUTMENT SEAT PER LINEAR METRE											
CULVERT TYPE	Ĺ	10	120~170 1000 Varies					000				
ij		MAR	RK s1			MAF	RK s2			MAF	RK s3	
	DIA (mm)	NO.	LENGTH	TOTAL LENGTH	DIA (mm)	NO.	LENGTH	TOTAL LENGTH	DIA (mm)	NO.	LENGTH	TOTAL LENGT
I	10	9	1.00	9.00	10	5	1.25	6.25	10	8	0.60	4.80
II	10	9	1.00	9.00	10	5	1.26	6.32	10	8	0.60	4.80
III	10	9	1.00	9.00	10	5	1.58	7.90	10	8	0.60	4.80
IV	10	9	1.00	9.00	10	5	1.94	9.69	10	8	0.60	4.80
V	10	9	1.00	9.00	10	5	2.23	11.15	10	8	0.60	4.80
V	10	9	1.00	9.00	10	5	2.27	11.35	10	8	0.60	4.80

	BAR BENDING SCHEDULE OF CURB							
CULVERT TYPE		120	75			L	-	
5		MAR	RK a6			MAF	RK a7	
	DIA (mm)	NO.	LENGTH	TOTAL LENGTH	DIA (mm)	NO.	LENGTH	TOTAL LENGTH
I	10	22	1.74	38.17	10	12	1.96	23.52
II	10	36	1.74	62.46	10	12	3.22	38.64
III	10	48	1.74	83.28	10	12	4.46	53.52
IV	10	56	1.74	97.16	10	12	5.44	65.28
V	10	70	1.74	121.45	10	12	6.90	82.80
VI	10	80	1.74	39.20	10	12	7.70	92.40
V	10	70	1.74	121.45	10	12	6.90	82.8

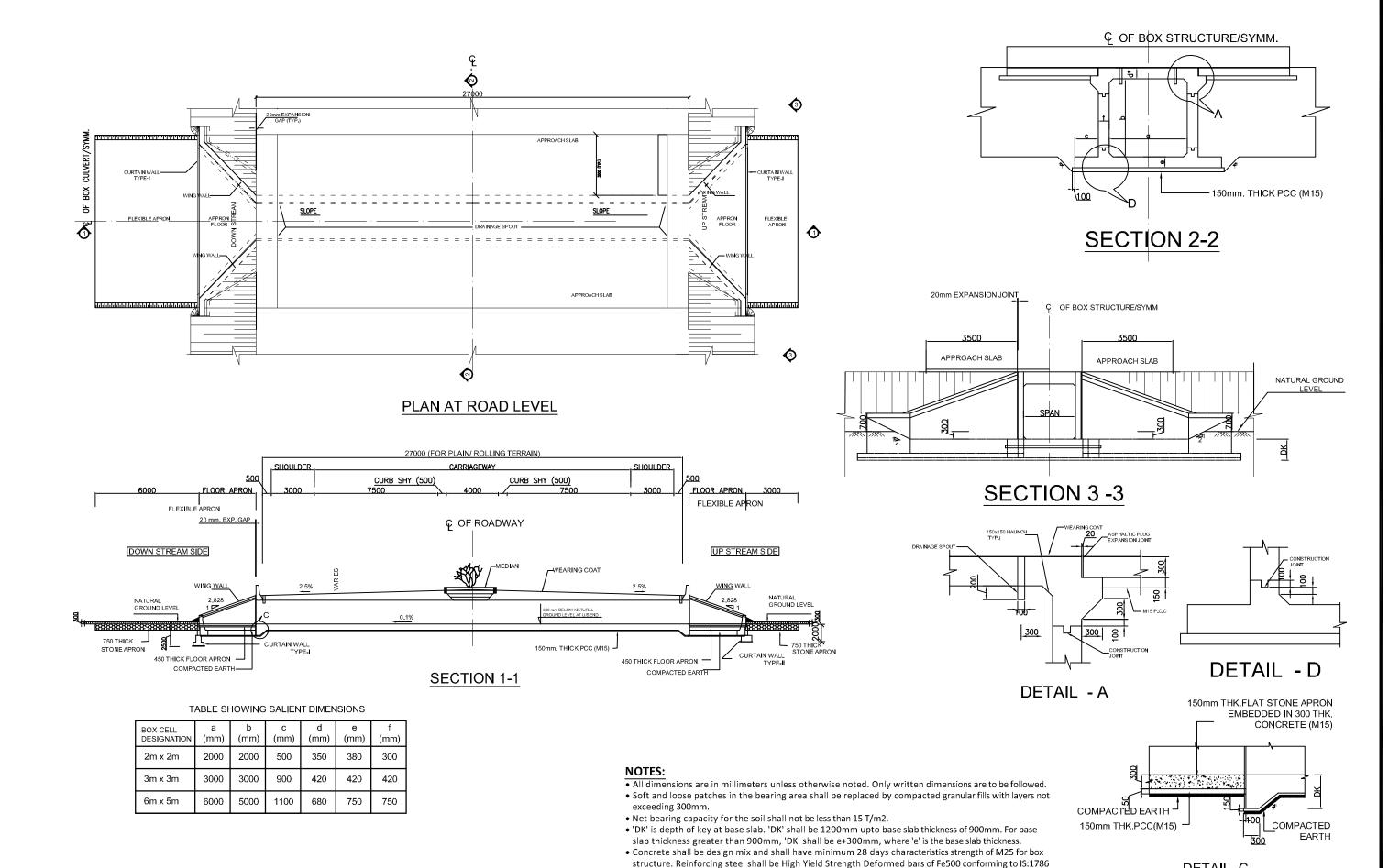
NOTES:

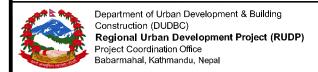
1. TMT BARS having characteristic strength 500 N/mm should be used.

2. All the dimensions are in millimetres except the dimensions in table.

SCALE (m)

Department of Urban Development & Building Construction (DUDBC) Regional Urban Development Project (RUDI
Project Coordination Office
Babarmahal, Kathmandu, Nepal


Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

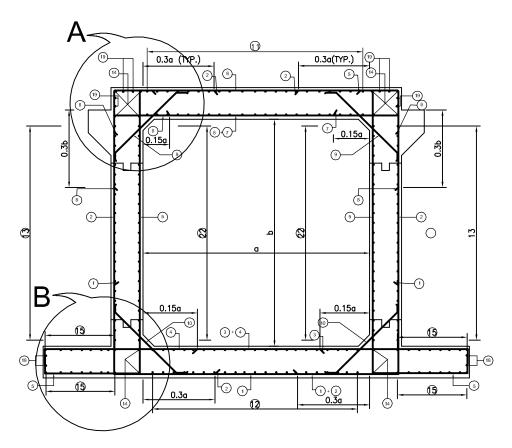

	Consultant	Client	Scale		
	Team Leader: YOO CHANGMIN	Approved By :			
d	Reviewed By: YAGYA BAHADUR MALLA				
	Drawn By : SHRIJANA SHRESTHA	Checked By:			

As Shown

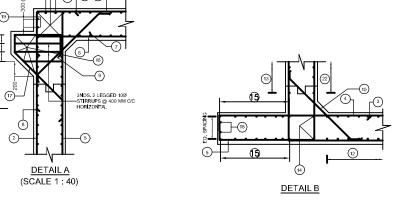
LUMBINI SANSKRITIK URBAN ROA
LUMBINI SANSKRITIK MUNICIPALI
CH: 0+000 - 12+257.65 Km

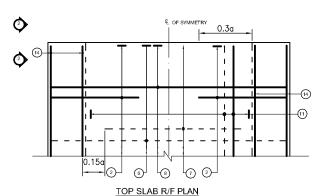
IENT	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
.ITY	DRG NO	: LSM/RD/TD/17
	SHEET NO	: 17

Reviewed & Designed By: DOHWA Engineering Co. Ltd. in Association with ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and DIGICON (P.) Ltd. Mid- Baneshwor, Kathmandu Tel: 01-4589393

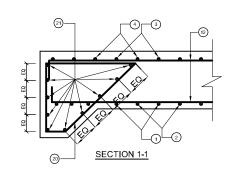

	Consultant	Client	Scale
	Team Leader : YOO CHANGMIN	Approved By :	
d	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

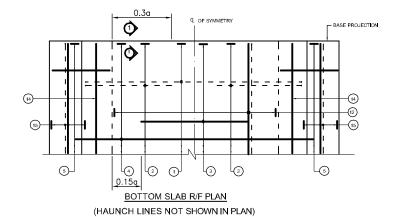
As Shown

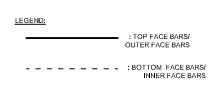

SINGLE CELL BOX CULVERT W/O CUSHION **LUMBINI SANSKRITIK URBAN ROADS LUMBINI SANSKRITIK MUNICIPALITY** CH: 0+000 - 12+257.65 Km

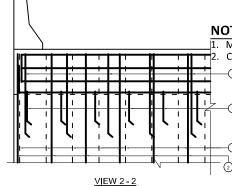

REV : DEC 2024 TITLE : TYPICAL DRAWINGS DRG NO : LSM/RD/TD/18 SHEET NO : 18

DETAIL-C

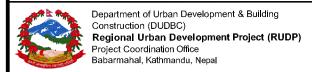



REINFORCEMENT DETAILS OF SINGLE CELL BOX CULVERT





BAR MARK 5)(19), KERB, BRACKET & HAUNCH LINES NOT SHOWN IN PLAN



<u>VIEW 2 - 2</u> (HAUNCH LINES NOT SHOWN IN PLAN)

NOTES:

- 1. Minimum clear cover to any reinforcing including stirrups shall be 50mm unless otherwise noted.
- . Construction Joints:
- The location and provision of construction joint shall be approved by Engineer-in-charge. In the drawings the construction joints are shown parallel to the direction of water flow. The concreting operation shall be carried out continuous upto the construction joints.
- . The concrete surface at the joint shall be brushed with a stiff brush after casting while the concrete is still fresh, and it has only slightly hardened.
- c. Before new concrete is poured the surface of old concrete shall be prepared as under:
- For hardened concrete, the surface shall be thoroughly cleaned to remove debris/laitance and made rough so that ¼ of the size of the aggregate is exposed.
- For partially hardened concrete, the surface shall be treated with wire brush followed by an air iet.
- The old surface shall be soaked with water without leaving puddles immediately, before starting concreting to prevent the absorption of water for new concrete.
- d. New concrete shall be thoroughly compacted in the region of the joints.
- 3. Welding of reinforcement bars shall not be permitted.
- 4. Minimum lap length of reinforcement shall be decided as per the reinforcement arrangement based on IRC:21-2000. Not more than 50% of reinforcement shall be lapped at any one location.
- 5. Bending of reinforcement bars shall be as per IS: 2502.

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

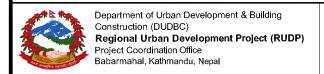
Consultant	Client	Scale
Team Leader: YOO CHANGMIN	Approved By :	
Reviewed By : YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

SINGLE CELL BOX CULVERT W/O CUSHION
LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

IION	REV	: DEC 2024
NDS	TITLE	: TYPICAL DRAWINGS
ITY	DRG NO	: LSM/RD/TD/19
	SHEET NO	: 19

MARK DESCRIPTION OF BARS (mm) (mm) mm. mm.		BAR SCHEDULE FOR BOX CULVERT 2X2 (WITHOUT CUSHION) PER M LENGTH									
2 M2 M1		DESCRIPTION OF BARS							LENGTH	WEIGHT	TOTAL WEIGHT (kg)
2	-	MI M2 MI	10	250	930	2500	4326	5	21.63	0.617	13.35
A	2	M2	16	250	850	2630	4275	10	42.75	1.580	67.56
10	3	MI	0	0	0	0	0	0	0.00	0.000	0.00
16	4		16	250	280	3500	4005	5	20.03	1.580	31.65
10	5	MI	16	250	2630	700	3648	10	36.48	1.580	57.65
8 MI M2 MI 10 250 900 2500 4266 5 21.33 0.617 13.17 9 MI 10 250 200 890 1243 10 12.43 0.617 7.67 10 MI M2 MI 10 250 200 932 1291 10 12.43 0.617 14.32 11 MI M2 MI 10 250 1000 1450 16 23.20 0.617 14.32 12 MI M2 MI 10 250 190 1000 1360 16 22.08 0.617 13.63 13 MI M2 MI 10 250 160 1000 1320 16 21.12 0.617 13.04 14 MI M2 MI 10 250 190 1000 1320 12 15.84 0.617 9.78 15 MI M2 MI 10 250 190 1000 1380 12 16.56 0.617 10.22 16 M1 M2 M1 10 250 190 1000 1380 12 16.56 0.617 10.22 16 M1 M2 M1 10 250 1000 0 1000 10 10.00 0.889 8.89 17 M2 M2 M3 10 0 160 1000 1320 4 5.28 0.617 3.26 19 M1 M2 M1 10 0 160 1000 1320 8 10.56 0.617 5.26 M1 M2 M1 10 0 160 1000 1320 8 10.56 0.617 5.26 M1 M2 M1 10 0 160 1000 1320 8 10.56 0.617 5.26	6		16	250	260	2500	2965	5	14.83	1.580	23.43
8 MI MI 10 250 900 2500 4266 5 21.33 0.617 13.17 9 MI 10 250 200 890 1243 10 12.43 0.617 7.67 10 MI 12 250 200 932 1291 10 12.91 0.889 11.48 11 MI M2 MI 10 250 225 1000 1450 16 23.20 0.617 14.32 12 MI M2 MI 10 250 190 1000 1360 16 22.08 0.617 13.63 13 MI M2 MI 10 250 160 1000 1320 16 21.12 0.617 13.63 14 MI M2 MI 10 0 160 1000 1320 12 15.84 0.617 9.78 15 MI M2 MI 10 250 190 1000 1380 12 16.56 0.617 10.22 16 M1 M2 M1 10 250 190 1000 1380 12 16.56 0.617 10.22 16 M1 M2 M1 10 250 190 1000 1320 10 10.00 0.889 8.89 17 M1 M2 M1 10 0 160 1000 1320 4 5.28 0.617 3.26 19 M1 M2 M1 10 0 160 1000 1320 8 10.56 0.617 3.26	7		0	0	0	0	0	0	0.00	0.000	0.00
10	8		10	250	900	2500	4266	5	21.33	0.617	13.17
10	9	M2/	10	250	200	890	1243	10	12.43	0.617	7.67
11	10	M2 MI	12	250	200	932	1291	10	12.91	0.889	11.48
12 MI	Ξ	MI	10	250	225	1000	1450	16	23.20	0.617	14.32
13 MI	12	MI	-0	250	190	1000	1380	16	22.08	0.617	13.63
14 MI	13		10	250	160	1000	1320	16	21.12	0.617	13.04
15 M M 10 250 190 1000 1380 12 16.56 0.617 10.22 16	14	MI MI	10	0	160	1000	1320	12	15.84	0.617	9.78
17	15		10	250	190	1000	1380	12	16.56	0.617	10.22
17	16	MI	12	0	1000	0	1000	10	10.00	0.889	8.89
19 MI M2 MI 10 0 160 1000 1320 8 10.56 0.617 6.52 MI+0.2H	17		12	250	1006	1268	2274	10	22.74	0.889	20.21
MI+0.28	18	MI M2 MI	10	0	160	1000	1320	4	5.28	0.617	3.26
		MI M2 MI	10	0	160	1000	1320	8	10.56	0.617	6.52
0.2M	11 20	M2 F	10	150	1100	1556	4207	50	210.35	0.617	129.85
21 MI M2 MI 10 0 160 3500 3786 20 75.72 0.617 46.74			10	0	160	3500	3786	20	75.72	0.617	46.74
22 MI 10 250 160 1000 1320 16 21.12 0.617 13.04	22		10	250	160	1000	1320	16	21.12	0.617	13.04
TOTAL WEIGHT= 515.47								Т	OTAL WEIG	нт=	515.47

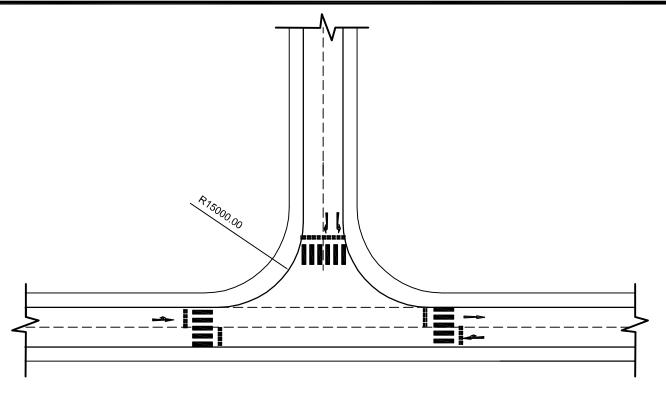

BAR SCHEDULE FOR BOX CULVERT 3X3 (WITHOUT CUSHION) PER M LENGTH										
BAR MARK	DESCRIPTION OF BARS	BAR DIA. (mm)	SPACING (mm)	M1 In mm.	M2 In mm.	LENGTH In mm.	NO. OF BARS	TOTAL LENGTH (m)	UNIT WEIGHT (kg/m)	TOTAL WEIGHT (kg)
1	MIL M2 JMI	10	200	1270	3740	6246	6	37.48	0.617	23.13
2	M2 MI	16	200	1270	3740	6225	12	74.70	1.580	118.05
3	MI	12	200	2100		2100	5	10.50	0.889	9.33
4	M2 MI MI	16	200	320	5540	6125	6	36.75	1.580	58.08
5	0.2m MI 0.2m <u>M2</u>	12	150	3740	1220	5298	16	84.77	0.889	75.35
6	M2 MI MI	16	200	260	3740	4205	6	25.23	1.580	39.87
7	MI	0	0	0	0	0	0	0.00	0.000	0.00
8	M2 MI MI	10	200	1270	3740	6246	6	37.48	0.617	23.13
9	M2 MI	10	200	200	1158	1511	12	18.13	0.617	11.19
10	M2 MI	10	200	200	1158	1524	12	18.29	0.617	11.29
II	M2 MI	10	200	260	1000	1520	30	45.60	0.617	28.15
12	M2 MI MI	12	200	210	1000	1420	30	42.60	0.889	37.87
13	M2 MI MI	10	200	210	1000	1420	30	42.60	0.617	26.30
14	M2 MI MI	10	0	160	1000	1320	12	15.84	0.617	9.78
15	M2 MI MI	10	200	210	1000	1420	24	34.08	0.617	21.04
16	MI	12	0	1000	0	1000	10	10.00	0.889	8.89
17	MI M2	12	200	1006	1268	2274	12	27.29	0.889	24.26
18	MI M2 MI	10	o	160	1000	1320	4	5.28	0.617	3.26
19	MI M2 MI	10	o	160	1000	1320	8	10.56	0.617	6.52
20	MI M2	10	200	1100	1556	4207	58	244.01	0.617	150.63
21	MI M2 MI	10	О	160	5540	5826	20	116.52	0.617	71.93
22	M2 MI MI	10	250	210	1000	1420	24	34.08	0.617	21.04
							Т	OTAL WEIG	HT=	779.10

BAR SCHEDULE FOR BOX CULVERT 6X5 (WITHOUT CUSHION) PER M LENGTH										
BAR MARK	DESCRIPTION OF BARS	BAR DIA. (mm)	SPACING (mm)	M1 In mm.	M2 In mm.	LENGTH In mm.	NO.OF BARS	TOTAL LENGTH (m)	UNIT WEIGHT (kg/m)	TOTAL WEIGHT (kg)
- 1	MI M2 MI	20	200	2200	7400	11731	6	70.39	2.469	173.80
2	M2 MI	20	200	2500	6330	11261	12	135.13	2.469	333.68
3	MI	16	200	4200	0	4200	5	21.00	1.580	33.19
4	M2 MI MI	20	200	650	9600	10831	6	64.99	2.469	160.47
5	0.2M 0.2M <u>M2</u>	12	125	6330	1750	8418	18	151.52	0.889	134.70
6	M2 MI MI	16	200	260	7400	7865	6	47.19	1.580	74.58
7	MI	12	200	4200	0	4200	5	21.00	0.889	18.67
8	M2 MI MI	10	200	2130	7400	11626	6	69.76	0.617	43.06
9	M2 MI M1	10	200	200	1993	2346	12	28.15	0.617	17.38
10	MI MZ	10	200	200	2092	2457	12	29.48	0.617	18.20
Ш	M2 MI MI	10	150	390	1000	1780	78	138.84	0.617	85.71
12	M2 MI MI	12	150	375	1000	1750	78	136.50	0.889	121.34
13	M2 MI MI	12	150	375	1000	1750	66	115.50	0.889	102.67
14	M2 MI MI	10	0	160	1000	1320	12	15.84	0.617	9.78
15	M2 MI MI	10	150	375	1000	1750	36	63.00	0.617	38.89
16	MI	12	0	1000	0	1000	10	10.00	0.889	8.89
17	MI M2	12	200	1171	1702	2872	12	34.46	0.889	30.64
18	MI M2 MI	10	0	160	1000	1320	4	5.28	0.617	3.26
19	MI M2 MI	10	0	160	1000	1320	8	10.56	0.617	6.52
20	MI M2	10	150	1100	1556	4207	130	546.91	0.617	337.62
21	MI M2 JMI	10	0	160	9600	9886	20	197.72	0.617	122.06
22	M2 MI MI	10	170	375	1000	1750	58	101.50	0.617	62.66
							Т	OTAL WEIG	нт=	1937.76

- NOTES:

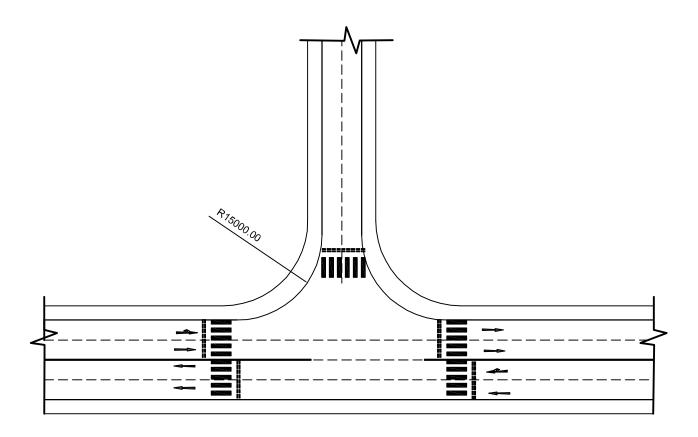
 1. Quantity of steel does not include 5% extra for wastage and laps.
- 2. Joint or lapping of bars shall be suitably staggered as per IRC:21-2000.
- 3. The bar list does not include the 10¢ stirrups on the notch where the approach

As Shown



Reviewed & DesIgned By:
DOHWA EngIneering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01- 4589393

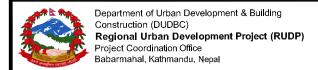
	Consultant	Client	Sca
	Team Leader: YOO CHANGMIN	Approved By :	
nd	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	


SINGLE CELL BOX CULVERT W/O CUSHION LUMBINI SANSKRITIK URBAN ROADS LUMBINI SANSKRITIK MUNICIPALITY CH: 0+000 - 12+257.65 Km

: DEC 2024 REV : TYPICAL DRAWINGS TITLE DRG NO : LSM/RD/TD/20 SHEET NO : 20

T-INTERSECTION WITH BASIC RIGHT TURN TREATMENT

SCALE:-1:1500



T-INTERSECTION WITH MULTIPLE LANE DIVIDED WITH NO SPECIFIC RIGHT TURN TREATMENT

SCALE:-1:1500

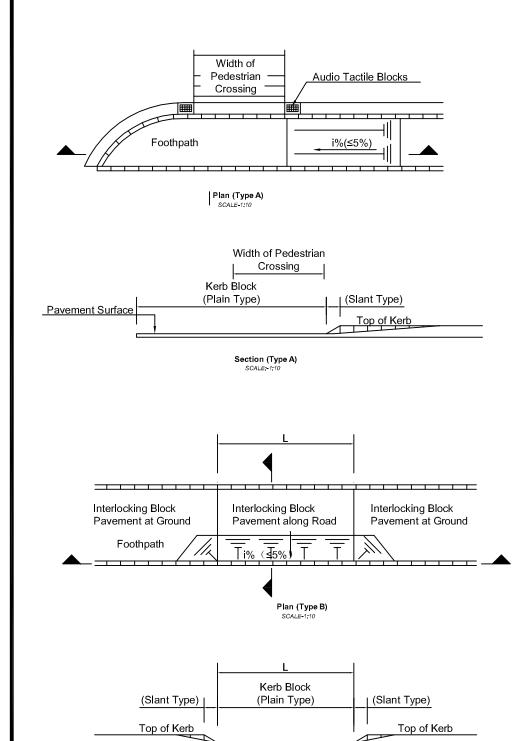
lotes:

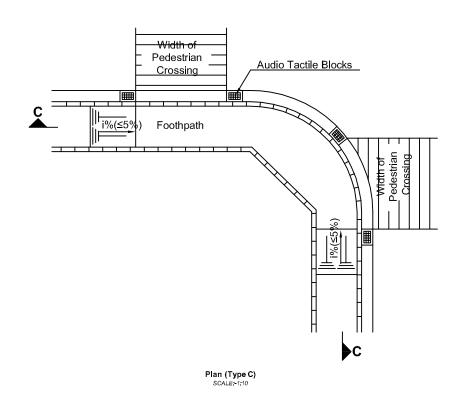
1) All Dimension are in mm unless stated.

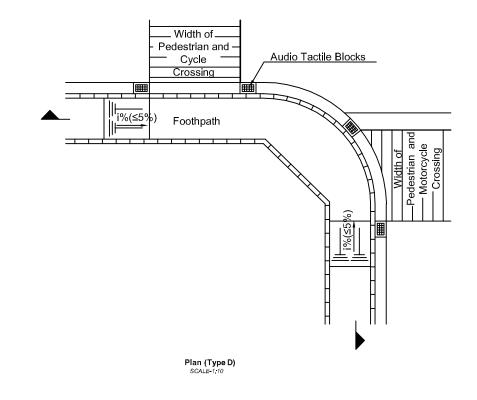
Reviewed & Designed By :
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.

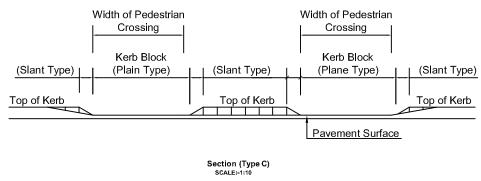
	Consultant	Client	Scale
	Team Leader : YOO CHANGMIN	Approved By :	
•	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

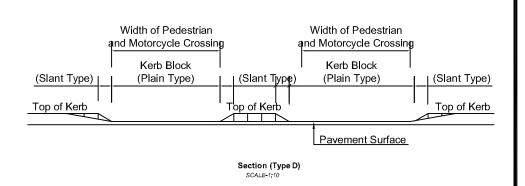
As Shown

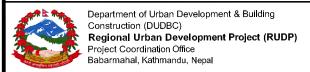

JUNCTION IMPROVEMENTS


LUMBINI SANSKRITIK URBAN ROADS

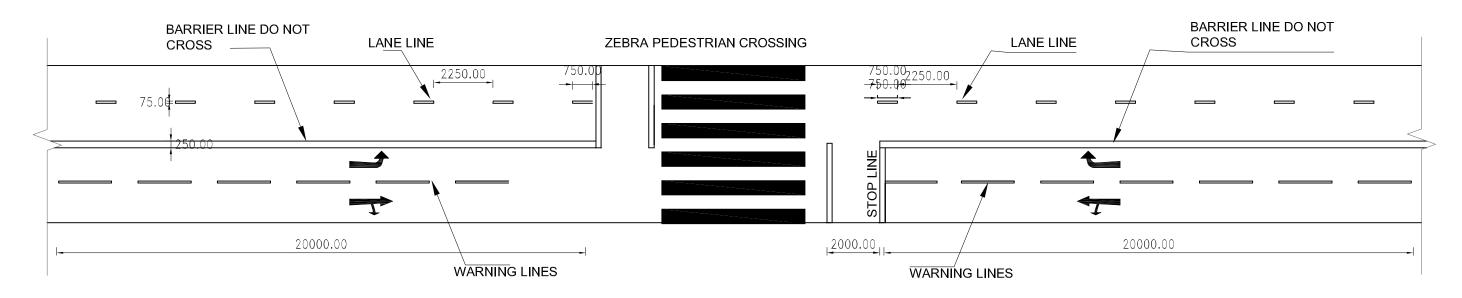

LUMBINI SANSKRITIK MUNICIPALITY


CH: 0+000 - 12+257.65 Km

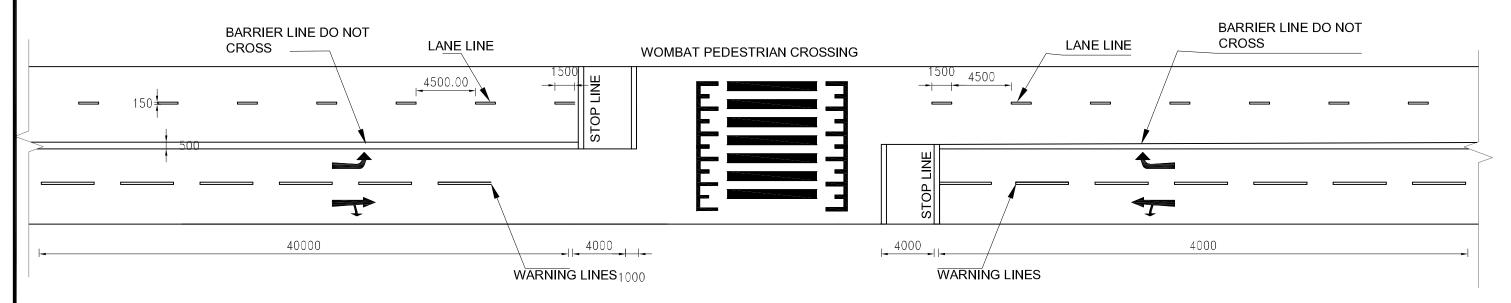

	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
ITY	DRG NO	: LSM/RD/TD/21
	SHEET NO	: 21



Pavement Surface

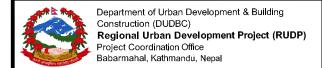

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

	Consultant	Client	Scale
	Team Leader: YOO CHANGMIN	Approved By :	
d	Reviewed By: YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	


As Shown

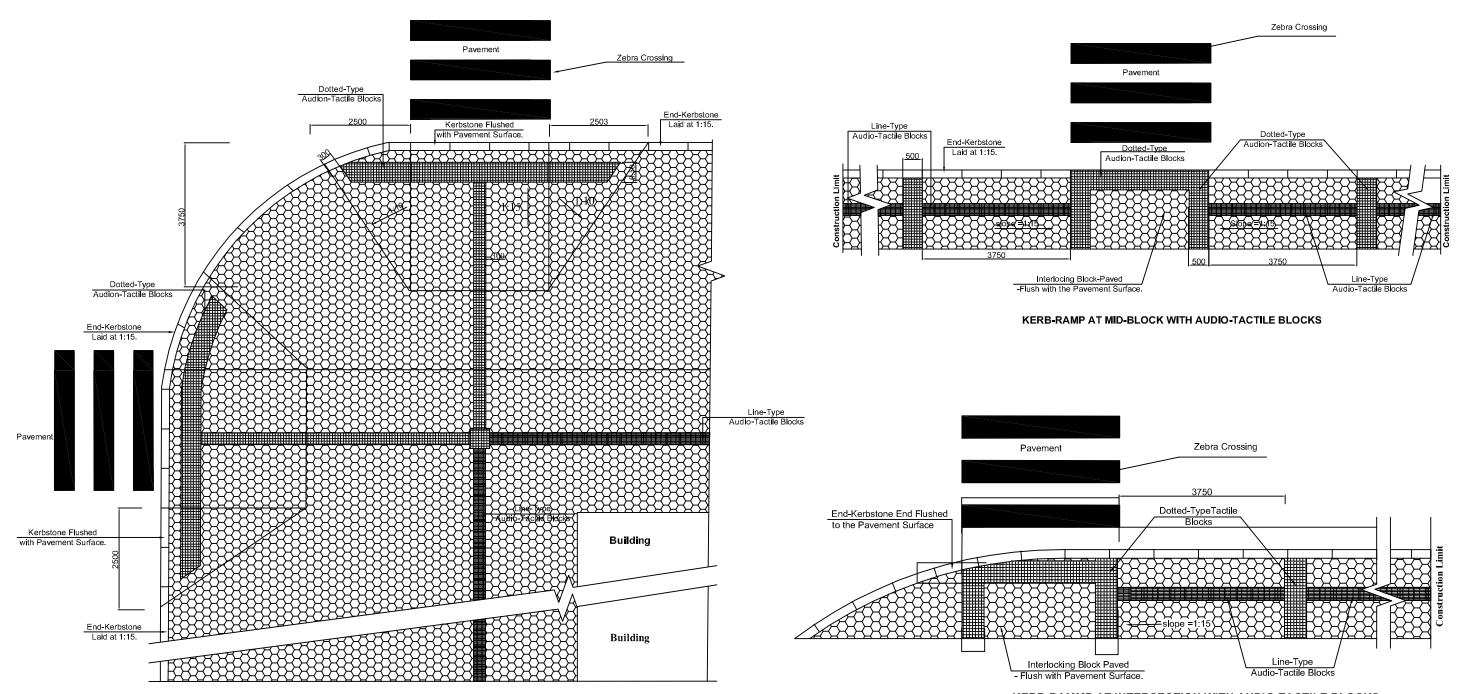
LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

ОТРАТН	REV	: DEC 2024
RBAN ROADS	TITLE	: TYPICAL DRAWINGS
UNICIPALITY	DRG NO	: LSM/RD/TD/22
57.65 Km	SHEET NO	: 22



MID-BLOCK WOMBAT CROSSING

NOT TO SCALE


Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid-Baneshwor, Kathmandu
Tel: 01-4589393

Consultant	Client	Scale
Team Leader : YOO CHANGMIN	Approved By :	
Reviewed By : YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown

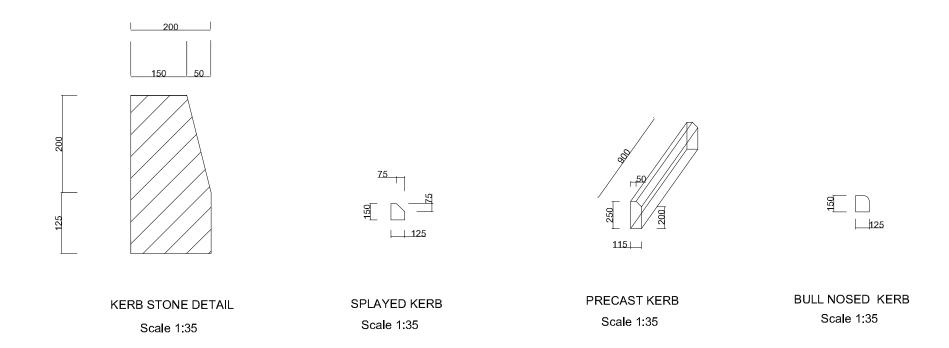
PEDESTRIAN CROSSINGS & LANE MARKINGS

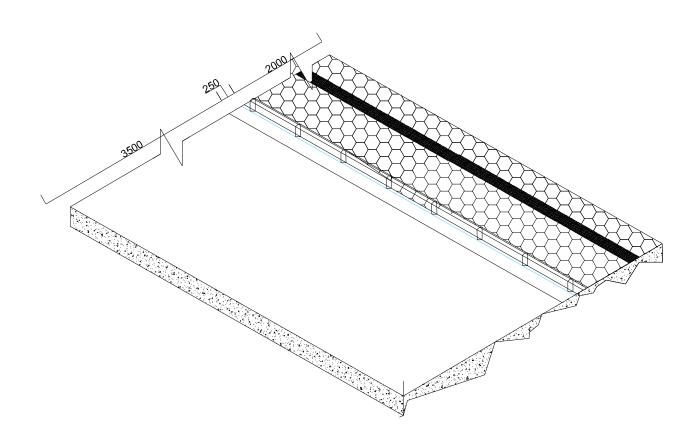
LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

FLARED KERB RAMP WITH AUDIO-TACTILE BLOCKS

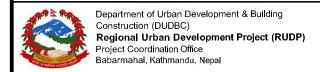
KERB-RAMMP AT INTERSECTION WITH AUDIO-TACTILE BLOCKS

	Department of Urban Development & Building Construction (DUDBC) Regional Urban Development Project (RUDP) Project Coordination Office Babarmahal, Kathmandu, Nepal
--	--


Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01- 4589393


	Consultant	Client	Sca
d	Team Leader: YOO CHANGMIN	Approved By :	
	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

As Shown


LUMBINI SANSKRITIK URBAN ROAL
LUMBINI SANSKRITIK MUNICIPALIT
CH: 0+000 - 12+257.65 Km

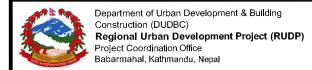
	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
LITY	DRG NO	: LSM/RD/TD/24
	SHEET NO	: 24

Isometric view of Raised cross walk & Kerb Detail

Reviewed & DesIgned By:
DOHWA EngIneering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

	Consultant	Client	Sca
	Team Leader: YOO CHANGMIN	Approved By :	
d	Reviewed By : YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By :	

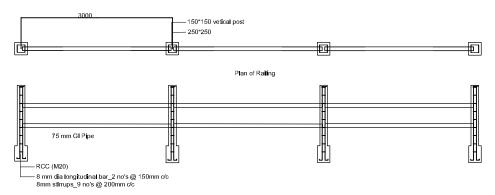
As Shown


ISOMETRIC VIEW OF FOOTPATH & KERE LUMBINI SANSKRITIK URBAN ROAI LUMBINI SANSKRITIK MUNICIPALIT CH: 0+000 - 12+257.65 Km

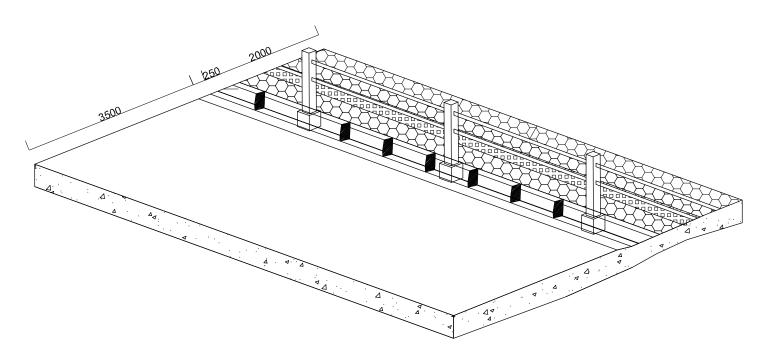
RBS	REV	: DEC 2024
ADS	TITLE	: TYPICAL DRAWINGS
ITY	DRG NO	: LSM/RD/TD/25
	SHEET NO	: 25

Isometric view of Main Road and Side Road Junction

Isometric view of Ramp with Footpath


Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

	Consultant	Client	Scale
	Team Leader: YOO CHANGMIN	Approved By :	
d	Reviewed By : YAGYA BAHADUR MALLA		_
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

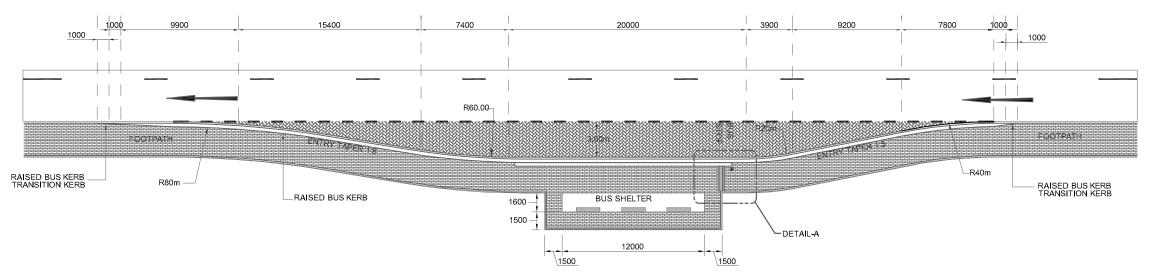

As Shown

Isometric View of Footpaths and Kerbs
LUMBINI SANSKRITIK URBAN ROADS
LUMBINI SANSKRITIK MUNICIPALITY
CH: 0+000 - 12+257.65 Km

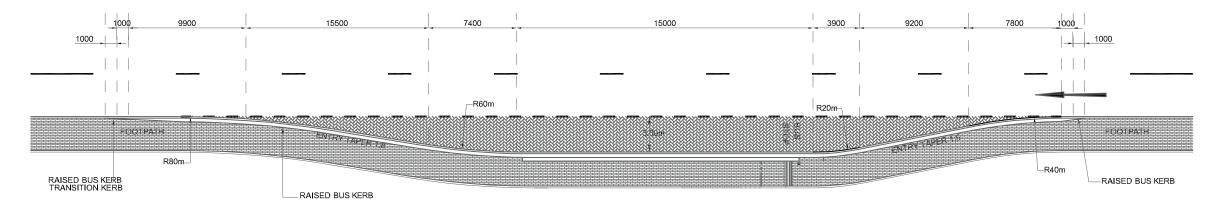
	REV	:	DEC 2024
s	TITLE	:	TYPICAL DRAWINGS
7	DRG NO	:	LSM/RD/TD/26
	SHEET NO	:	26

Front view of Railing

Isometric view of Railing with Footpath


Reviewed & DesIgned By:
DOHWA EngIneering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

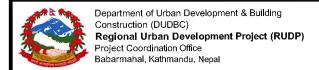
	Consultant	Client	Sca
	Team Leader : YOO CHANGMIN	Approved By :	
1	Reviewed By: YAGYA BAHADUR MALLA		
	Drawn By : SHRIJANA SHRESTHA	Checked By:	


As Shown

Isometric View of Footpaths and Kerbs LUMBINI SANSKRITIK URBAN ROADS LUMBINI SANSKRITIK MUNICIPALITY CH: 0+000 - 12+257.65 Km

	REV	: DEC 2024
s	TITLE	: TYPICAL DRAWINGS
7	DRG NO	: LSM/RD/TD/27
	SHEET NO	: 27

Typical Layout for a standard Bus Stop Layby Not to Scale

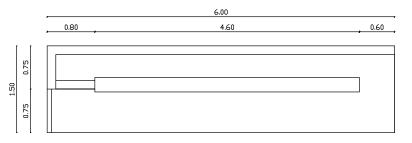

Typical Layout for a Standard Bus Stop Layby Not to Scale

NOTES:

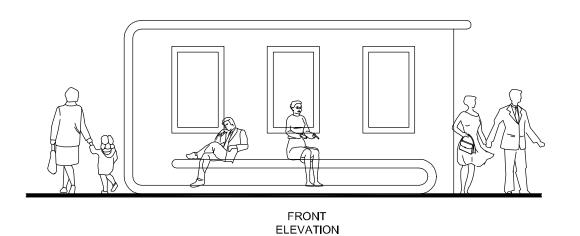
All dimensions are in millimeter unless otherwise stated.

All materials and workmanship shall be in accordance with the current N.C.S unless otherwise agreed with the engineer.

Production and siting of traffic signs and road marking shall be as per current version of the Nepal traffic control manual.

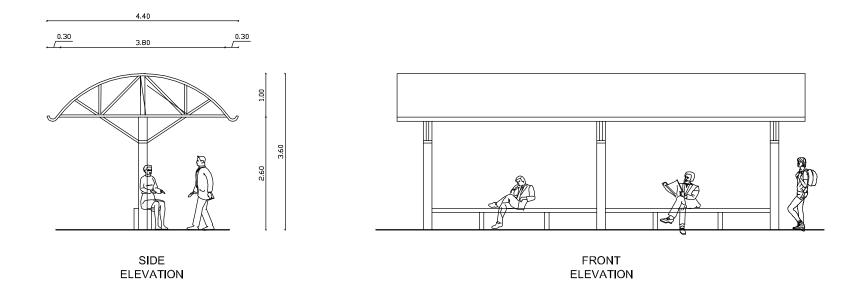

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

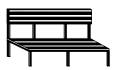
	Consultant	Client	Scale
Team Leader : YOO CHANGMIN Reviewed By : YAGYA BAHADUR MALLA		Approved By :	
	Drawn By : SHRIJANA SHRESTHA	Checked By:	


As Shown

LUMBINI SANSKRITIK URBAN ROA
LUMBINI SANSKRITIK MUNICIPALI
CH: 0+000 - 12+257.65 Km

	REV	: DEC 2024
ROADS	TITLE	: TYPICAL DRAWINGS
IPALITY	DRG NO	: LSM/RD/TD/28
Km	SHEET NO	: 28




PLAN

SIDE ELEVATION

BUS STAND

REST/WAITING STATIONS WITH SHEDS

WOODEN RESTING BENCH

Reviewed & DesIgned By:
DOHWA EngIneering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu
Tel: 01-4589393

	Consultant	Client	
Team Leader : YOO CHANGMIN		Approved By :	
Reviewed By : YAGYA BAHADUR MALLA			
	Drawn By : SHRIJANA SHRESTHA	Checked By:	

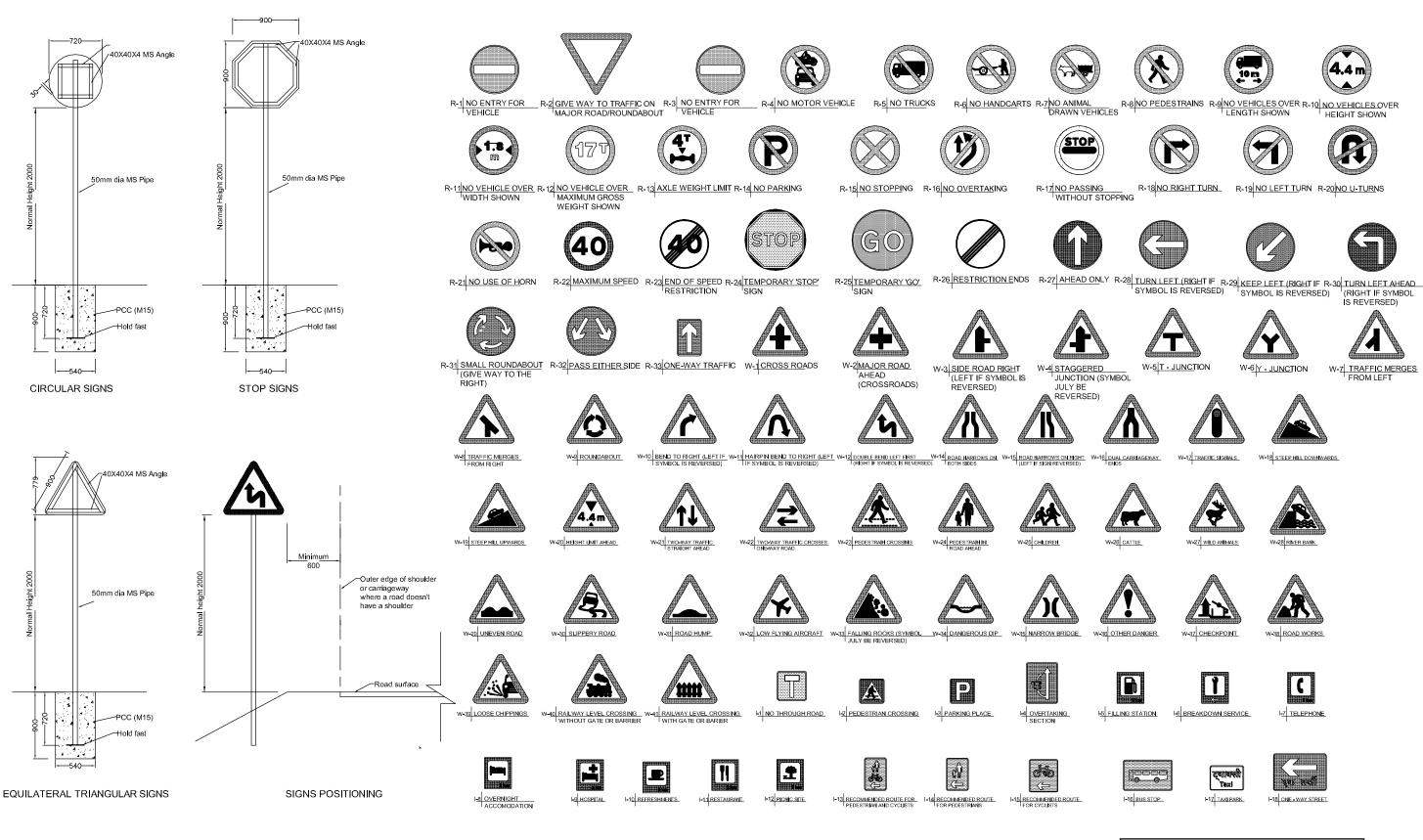
As Shown

Scale

TYPICAL BUS AND WAITING STANDS

LUMBINI SANSKRITIK URBAN ROADS

LUMBINI SANSKRITIK MUNICIPALITY


CH: 0+000 - 12+257.65 Km

REV : DEC 2024

TITLE : TYPICAL DRAWINGS

DRG NO : LSM/RD/TD/29

SHEET NO : 29

Note:

For the dimensions of board signs and letter, Please Refer Traffic Signs Manual Vol 1 & 2.

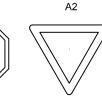
Reviewed & Design DOHWA Englneerin in Association ERMC (P.) Ltd., SILT Consult DIGICON (P.) I Mid- Baneshwor, Katl Tel: 01- 458939

ned By:	•
g Co. Ltd. with	ŀ
tants (P.) Ltd., and Ltd.	r
hmandu	h

	Consultant
	Team Leader : YOO CHANGN
d., and	Reviewed By : YAGYA BAHA
	Drawn By : SHRIJANA SHRE

Consultant	Client	
Team Leader : YOO CHANGMIN	Approved By :	
Reviewed By: YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By:	

Scale


Not to Scale

TRAFFIC CONTROL MEASURES LUMBINI SANSKRITIK URBAN ROAD LUMBINI SANSKRITIK MUNICIPALIT CH: 0+000 - 12+257.65 Km

DS TY	REV	:	DEC 2024
	TITLE	:	TYPICAL DRAWINGS
	DRG NO	:	LSM/RD/TD/30
	SHEET NO	:	30

RECTO-REFLECTIVE SIGN TYPICAL

Stop And Give Way

No Entry

A27

А3

A14

No Parking

No Stopping

A15

A18

No Right Turn

A22

Maximum Speed

Ahead Only

Turn Left

C2

Keep Left

C3

Turn Left Ahead

No Left Turn

Pass Either Side

A33

One Way Traffic

Pedestrian Crossing

B23

Pedestrian Crossing

Parking Place

C17

Bus Stop

SIZE OF REGULATORY SIGNS (Reviews)

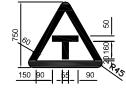
SIGN TYPE	Α	В	С	D	E	F	G
а	750	864	750	600	865	300	600
b	750	750		450	600	300	375
REMARKS	в	a	a	q	a	a a	<u>a</u>
	A 1	A2	A3-A32	A33	B1-B12	C2.C3	C17

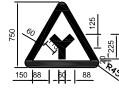
NOTE:

Refer Nepal Traffic Sign Manual by D.O.R.

SIZE OF REGULATORY SIGNS (Reviews)

DETAILS OF FEW RECTO-REFLECTIVE SIGN TYPICAL


B1:Cross Roads Scale:-1:25

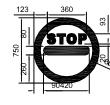

B3:Side Road Right

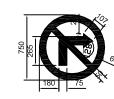
B4:Staggered Junction (symbol JULY be reversed)

B5:T Junction

B6:Y Junction

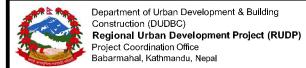
B10:Bend to Right


B12:Double Bend (right if symbol reversed)


B14:No Parking

A15:No Stopping

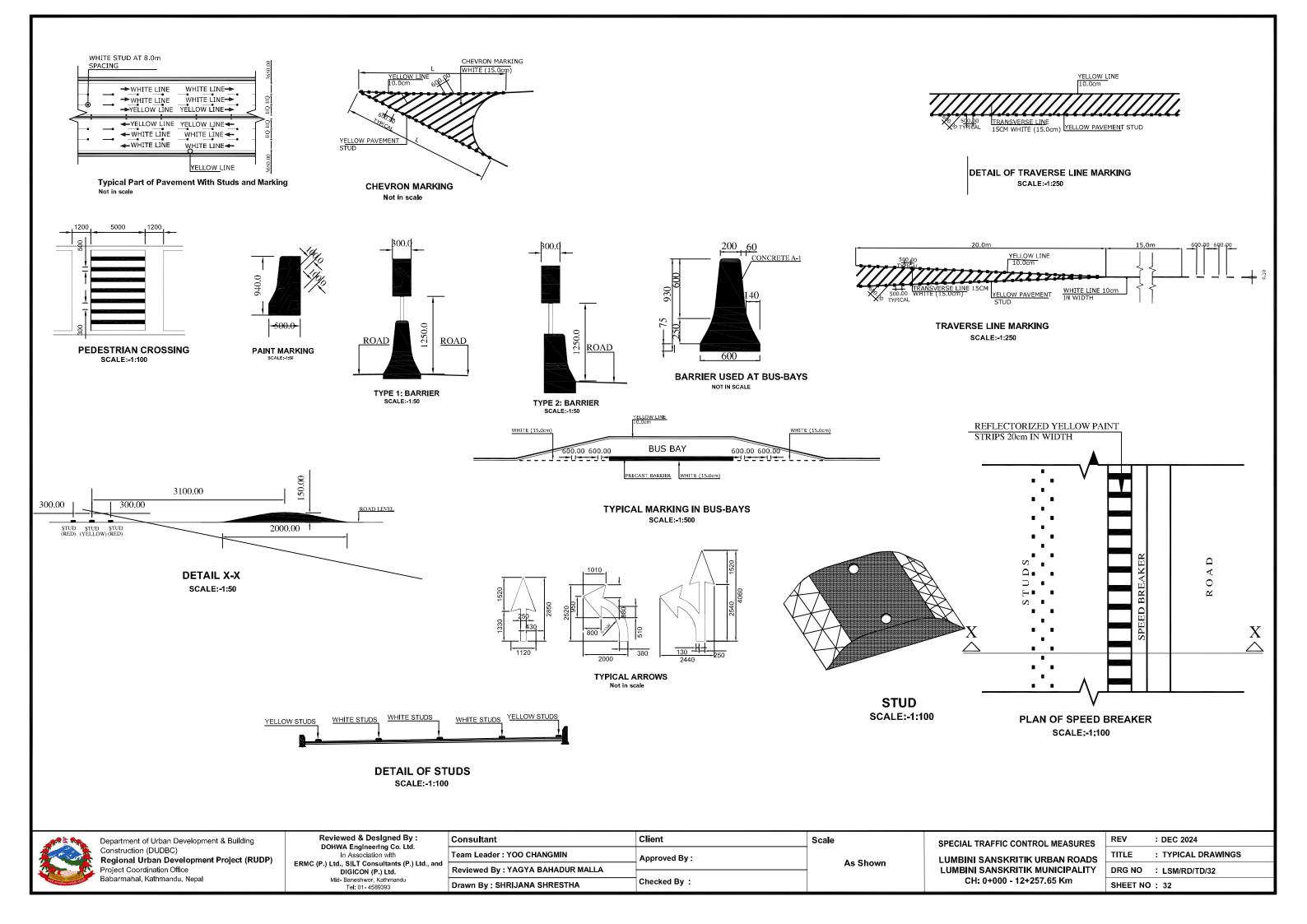
A17:No Passing Without Stopping

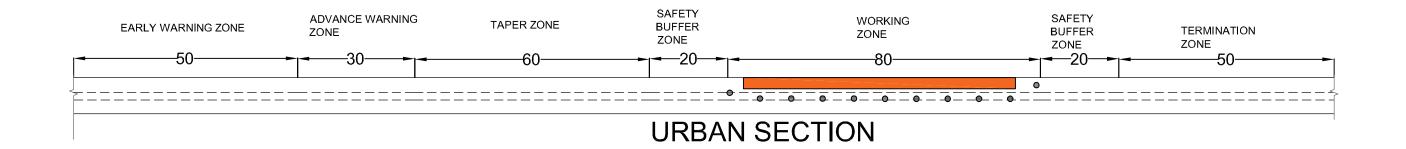

A18:No Right Turn

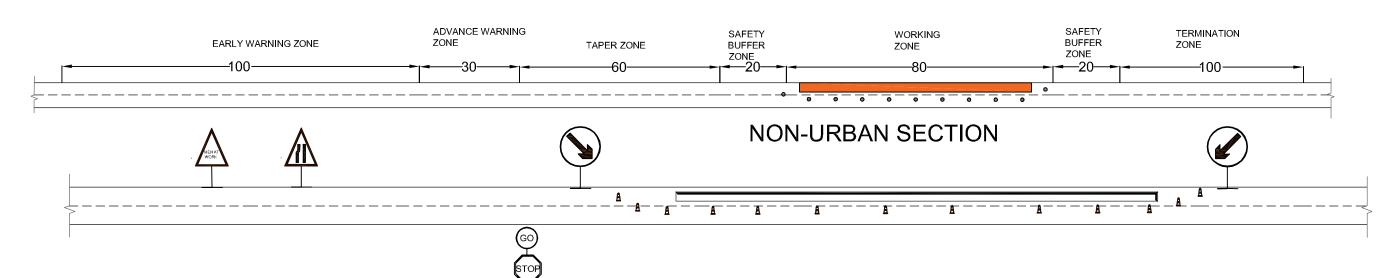
A19:No Left Turn

A22:Maximum Speed

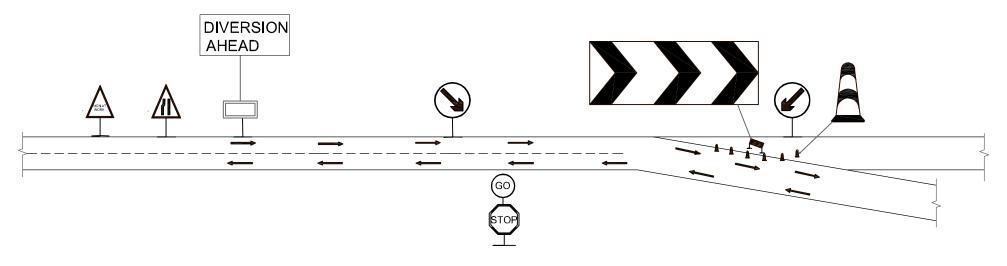
Reviewed & Designed By DOHWA Englneering Co. Ltd in Association with ERMC (P.) Ltd., SILT Consultants (P. DIGICON (P.) Ltd. Mid- Baneshwor, Kathmandu Tel: 01- 4589393


td.	Consultant
	Team Leader: YO
P.) Ltd., and	Reviewed By : YA
	Drawn By : SHRI


_	Consultant	Client	Scale
Team Leader : YOO CHANGMIN		Approved By :	
Reviewed By : YAGYA BAHADUR MALLA			
	Drawn By : SHRIJANA SHRESTHA	Checked By:	


As Shown

TRAFFICE CONTROL MEASURES 02 LUMBINI SANSKRITIK URBAN ROAD LUMBINI SANSKRITIK MUNICIPALIT CH: 0+000 - 12+257.65 Km


DS TY	REV	: DEC 2024
	TITLE	: TYPICAL DRAWINGS
	DRG NO	: LSM/RD/TD/31
	SHEET NO	: 31

TRAFFIC MANAGEMENT PLAN FOR PARTIAL ROAD ROAD CLOSURE (ONE LANE CLOSED) DURING CONSTRUCTION WORK

TRAFFIC MANAGEMENT PLAN FOR FULL ROAD CLOSURE (TRAFFIC DIVERSION) DURING CONSTRUCTION WORK

The state of the s	Department of Urban Development & Building Construction (DUDBC) Regional Urban Development Project (RUDP) Project Coordination Office Babarmahal, Kathmandu, Nepal
--	--

Reviewed & Designed By:
DOHWA Engineering Co. Ltd.
in Association with
ERMC (P.) Ltd., SILT Consultants (P.) Ltd., and
DIGICON (P.) Ltd.
Mid- Baneshwor, Kathmandu

Consultant	Client	
Team Leader : YOO CHANGMIN	Approved By :	
Reviewed By: YAGYA BAHADUR MALLA		
Drawn By : SHRIJANA SHRESTHA	Checked By :	

As Shown

LUMBINI SANSKRITIK URBAN ROAD
LUMBINI SANSKRITIK MUNICIPALIT
CH: 0+000 - 12+257.65 Km

Scale

	REV	: DEC 2024
OADS ALITY	TITLE	: TYPICAL DRAWINGS
	DRG NO	: LSM/RD/TD/33
	SHEET NO	: 33